
Hack Research 2019 RGV

c

Proceedings of the 2nd Hack Research Hackathon
University of Texas - Rio Grande Valley

HαcκR 2019
Tim Wylie, Editor

Copyright c© 2019 for the individual papers by the papers’ authors. Copying permitted
only for private and academic purposes. This volume is published and copyrighted by
its editors.

i

Preface

Hack Research was able to mature this year from being solely an experiment to an
annual event for engaging students in research at the university level. This was not
easy. However, we saw an increase in the number of participants and the quality of that
participation.

The goal of Hack Research is to have a competition focused on algorithmic and the-
oretical skill development rather than software. This gives students who excel in these
areas an opportunity to apply that knowledge, and provides a meaningful way to connect
with faculty and possibly get involved with them in research. The majority of the prob-
lems are actual open problems of interest in several areas of Computer Science. These
are posed by faculty and students in various research groups. Some of the problems
target the development of research skills (such as using certain ML techniques) rather
than unsolved problems.

The most difficult part of posing problems comes from striking a balance between a
problem being interesting and yet approachable. Attempting to find such open problems
is a struggle when the problems should be nontrivial. This year we did a better job of
finding/defining these types of problems, but we were not entirely successful in this
endeavour. However, when flaws were found, they cultivated meaningful conversations–
enriching our understanding of the topics. This often engaged faculty and students from
other groups where we explored whether the problem was too hard or trivial, and what
the problem should be. This, in turn, led to fruitful directions for future work.

Because our budget was limited, and because of the knowledge required to be sucessful
at Hack Research, we limited our advertisement of the event to upper level courses and
word of mouth. Thus, although the event was open to anyone, there were almost no
participants who were first or second year students. Hopefully, in the future, we can
expand the types of problems and the number of participants.

Many people contributed to the success of the event, and I have tried my best not to
miss anyone in the acknowledgements section. I do want to thank Robert Schweller here
for his help in supporting the event.

Overall, HαcκR progressed more than expected and hopefully next year we will con-
tinue to grow and connect people.

December 7-8, 2019
Edinburg, TX, United States

Tim Wylie, Editor

ii

Acknowledgements

This event would not have been possible without the help of many people of whom we
are extremely grateful to know. Our families were supportive and sacrificed a great
deal for us to pursue these outreach activities, and we are thankful for them and their
patience. We owe a lot to Lisa Moreno, whose administrative help made all the tedious
aspects of the process simple for us. Without her support, Hack Research would not
have been possible.

There are several people who contributed their time and skills to making this event
a success. The ASARG team posed problems and helped during parts of the event.
Samantha Luchsinger was the director when indecision or apathy occurred at the event.
She is the reason things were organized and not on fire. Robert Schweller, Marzieh Ayati,
and Emmett Tomai from the faculty contributed problems and attended the event to
help out. Hongkai Yu and Zhixiang Chen also came by to support the event.

We are thankful for the sponsors who gave us the support we needed to make the
event a reality. The Computer Science department at UTRGV backed the effort both
monetarily and with the support of faculty and staff. Facebook was kind enough to pay
for the shirts and the main meals. Overleaf sent us a bunch of helpful materials to help
the students get started using LATEX. Finally, we are thankful for the support from the
National Science Foundation in our efforts to explore theoretical Computer Science and
to increase undergraduate research participation. Their support comes from National
Science Foundation Grant CCF-1817602.

Sponsors

https://www.utrgv.edu/csci https://www.facebook.com

https://www.overleaf.com https://www.nsf.gov

iii

https://www.utrgv.edu/csci
https://www.facebook.com
https://www.overleaf.com
https://www.nsf.gov

Organization

HαcκR 2019 was organized by the Algorithmic Self-Assembly Research Group (ASARG)
with the help of the Department of Computer Science at the University of Texas Rio
Grande Valley. The event was graciously hosted by UTRGV in Edinburg, TX. Fur-
ther, the event was supported in part by Facebook, Overleaf, and by National Science
Foundation Grant CCF-1817602.

Directors

Tim Wylie timothy.wylie@utrgv.edu University of Texas Rio Grande Valley

Program Committee

Marzieh Ayati marzieh.ayati@utrgv.edu University of Texas Rio Grande Valley
Robert Schweller robert.schweller@utrgv.edu University of Texas Rio Grande Valley
Emmett Tomai emmett.tomai@utrgv.edu University of Texas Rio Grande Valley

Volunteers

Samantha Luchsinger
Lisa Moreno

ASARG Members

Robert Michael Alaniz
Jose Balanza-Martinez
David Caballero
Eden Canales
Angel Cantu
Mauricio Flores
Mason Garza
Timothy Gomez
Frank Gonzalez
Ari Gutierrez
Austin Luchsinger
Aileen Perez
Isabel Sanchez

iv

Results

Hack Research is still experimental, and therefore registration was restricted to maintain
a small size. The event had around 60 students participate in the 24-hour event. Of
those students, a remarkable 31 students submitted a paper to compete for the prizes. In
total, there were 12 submissions. Four professors contributed problems, and six faculty
attended some portion with several staying the majority of the time in order to encourage
and assist students.

Winners

There were many quality papers submitted this year. The judges narrowed it down to
these papers as the top four based on quality, effort, teamwork, and difficulty.

1. First Place

• Complexity is the Bomb(erman)!
Robert Michael Alaniz, Richard Marvin, Eden Canales

2. Second Place

• Using Multiple Reinforcement Agents to Improve Retraining Time∗

Kevin Eastin, Fernando Martinez

3. Third Place

• Comparator Circuit Complexity
David Caballero, Tim Gomez

4. Fourth Place

• On Some Simple Variants of Robot Motion Planning with Global Control
Isabel Sanchez, Francisco Gonzalez

∗Graduate Team

v

Table of Contents

Complexity is the Bomb(erman)! 1
Robert Michael Alaniz, Richard Marvin, Eden Canales

On Some Simple Variants of Robot Motion Planning with Global Control 3
Isabel Sanchez, Francisco Gonzalez .

Using Multiple Reinforcement Agents to Improve Retraining Time 5
Kevin Eastin, Fernando Martinez .

Dare you to push my buttons 7
Domingo Martinez, Lauryn Brough, Salvador Jimenez, Aileen Perez

K-UAV 9
Alissa Flores, Mauricio Florese, William Reckley, Roberto Rivas

Global Control for Robots: Examples in NP-Reductions 11
Bryant Riley, Jason Villarreal, Aaron Ortiz, Brandon Anzaldua

Towards Kinase-Substrate Interaction Prediction 12
Arnoldo Ramirez, Austin Luchisnger .

Comparator Circuit Complexity 14
David Caballero, Tim Gomez .

Experimenting on Fractals with Negative Glues 16
Isaiah Saucedo, Jamila Bunagan, Johnny Marroquin

Gobblet with Concrete is PSPACE-HARD 18
Jose Balanza-Martinez .

Machine learning Hack Research Problem Attempt 20
Kirk Miller, Ken Evasco .

Deep Q Network to Learn Goal Oriented Tasks 21
Daniel Acevedo, Kevin Teran .

vi

HαcκR 2019

Complexity is the Bomb(erman)!

R. Michael Alaniz ∗ Richard Marvin † Eden Canales ‡

Abstract

We prove NP-hardness for the Super Nintendo video
game Super Bomberman. Our results apply to a general-
ized version of the classic Bomberman games that can be
applied to all games in the franchise. We then go on to
attempt to prove PSPACE-completeness of the games.

1 Introduction

After reading ”Classic Nintendo Games are (Computa-
tionally) Hard,” we were inspired to try to do our own
proof of complexity for a video game. In this paper we
analyze a well known game series that currently has no
results, Bomberman. We prove that it is NP-hard to play
a generalized version of the SNES game Super Bomber-
man (Developed by Produce!), which all other Bomber-
man games can be reduced to.

In Bomberman, players take control of Bomberman
with the goal of reaching the exit of the stage. Players
have the ability to drop one bomb by default and can gain
multiple power-ups, but if Bomberman takes damage he
loses all power-ups. Their are two types of blocks within
a stage, soft blocks and hard blocks. Soft blocks can be
blown up by a bomb while hard blocks cannot. The exit
of a stage is hidden under a soft block. We make use of
multiple ’power-ups’, vest, heart, punch, and bomb-up.
Vest is akin to the Super Mario star making the player
invincible, the heart power allows the user to take a hit
without dying, punch allows for the ’punch’ of bombs,
knocking them forward, and bomb-up which allows for
the player to increase how many bombs they can drop.

For this game, we use the decision problem of reacha-
bility: given a stage is it possible to reach the goal point
g from the start point s? Our results apply to a gener-
alized version of the game where mechanics are the same
but the player starts with no bombs. Our NP-hardness
proof is a reduction from 3-SAT.

We briefly highlight some related work in Section 2,
and then provide the definitions and results of our work
in Section 3. We then conclude in Section 4 and point
towards the general research goals for this work [2].

2 Related Work

Our 3-SAT reduction is similar to the one in this paper:
Classic video Games are (Computationally) Hard.[1] De-

∗Department of Computer Science, University of Texas Rio
Grande Valley, robert.alaniz01@utrgv.edu
†Department of Computer Science, University of Texas Rio

Grande Valley, richard.marvin01@utrgv.edu
‡Department of Computer Science, University of Texas Rio

Grande Valley, eden.canales01@utrgv.edu

Figure 1: A general framework for NP-hardness

maine et al. use the framework shown in Figure 1 to show
NP-hardness for multiple classic Nintendo games.

3-SAT is a satisfiability problem: given an expression,
is there some assignment of TRUE and FALSE values to
the variables that will make the entire expression true?

3 Our Results

3.1 NP-hard result

Theorem 1 It is NP-hard to decide whether the goal is
reachable from the start of a stage in generalized Super
Bomberman.

Proof. We use the general framework of a 3-SAT proof
shown in Figure 1, so all we had to do was implement
gadgets. We also generalize Bomberman to start with
only one life and to not be able to place any bombs by
default.

Figure 2: The variable gadget

The variable gadget has two ”warps”, one that repre-
sents each literal of the previous variable. These warps
act as one way gates, once Bomberman walks through
one he cannot go back to a previous variable. To choose
what value to assign to the variable, simply walk through

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

1

Hack Research 2019

Figure 3: The full 3SAT game board.

Figure 4: The full clause gadget

the corresponding variable. An example being the warp
on the left represents x while the warp on the right is x’.

Next is the Clause gadget, shown in Figure 3. As
Bomberman enters the bottom he is given three power-
ups: bomb-up which gives Bomberman a bomb, boxing
glove which gives the punch ability, and heart which al-
lows the player to take damage but lose the previous
power-ups. The three sections at the bottom correspond
to the three literals that are in the clause. When the
clause is visited, Bomberman punches a bomb across the
hard blocks, not landing until it finds an open space,
which blows up a soft block and reveals a vest. The vest
will stay there until Bomberman reaches that path and
picks it up, giving him invincibility to get past the tank’s
flames on the left in Figure 3. The tank flames at the end
of Figure 4 are to remove the power-ups from Bomberman
and then move on to the next gadget.

Using these warps, and making them one-way, we elim-
inated the need for crossover gadgets. Now a section
simply has a warp that takes you to the next gadget.
A clause gadget has a warp that takes you to the next
variable gadget for instance. �

3.2 PSPACE-Completeness results

The kick power-up allows you to kick a bomb which will
then slide until it encounters an obstacle. The bomb will
also never detonate if bomberman has the remote bomb
power-up which allows the player to choose when it deto-
nates. These are the same rules as Erik Demaine’s Push-
Push1, which is PSPACE-complete.[1]

Theorem 2 It is PSPACE-complete to decide whether
a given target location is reachable from a given start
location in the generalized version of Bomberman.

4 Conclusion

In this paper we successfully showed that the Bomber-
man series is NP-hard through a 3SAT reduction, using
a variable gadget, clause gadget, and bypassing crossover
gadgets using features of the video game mechanics,
and began to show PSPACE-Completeness. While we
started our basis for a PSPACE-complete proof and got
a result, we wanted to implement the Door gadget De-
meaine et. Al. created for The Legend of Zelda in
their PSPACE proof, and definitively show PSPACE-
Completeness. Leaving this open for further work and
re-visitation.

References

[1] E. Demaine. Classic nintendo games are (computation-
ally) hard, 2015.

[2] T. Wylie. Why hack research is the best, 2019.

2

HαcκR 2019

On Some Simple Variants of Robot Motion Planning with Global
Control

Isabel Sanchez ∗ Francisco Gonzalez †

Abstract

We investigate some simple variants of robot motion plan-
ning with global control; more specifically, we will focus
on line occupancy, which focuses on checking whether a
given configuration has a step sequence that will occupy
positions of a 1 × n line and square occupancy, which
focuses on checking whether a given configuration has
a step sequence that will occupy positions of an n × n
square.

1 Introduction

The tilt model, proposed by Becker et al. [4], has foun-
dations in classical motion planning. A couple of natural
problems that arise in these computational systems are
those of relocation and reconfiguration. Relocation is the
problem of whether a sequence of tilts exists to relocate a
tile from location a to location b. Reconfiguration asks if
a sequence of tilts exists to transform board A to board
B (specifying the location of all tiles). These were shown
to be PSPACE-complete in 4-directions [1].

Here, we discuss a variant of this model (introduced
in [3]) where particles exist within a board and move, in
uniform, single unit distances (rather than maximally).
This variant is referred to as the single step model. Fig-
ure 1 shows a simple example. The relocation and re-
configuration problem in this model were shown to be
NP-Complete when limited to two perpendicular direc-
tions [2].

Proposal The goal is to investigate one of the sim-
plest variants of the model. We obtain a simpler variant
by constraining parameters of the problem input. The
constraints to consider are the number of usable direc-
tions, and the complexity of the board. We will consider
the problems in which only two perpendicular directions
are usable, without loss of generality let these be East
and South. There are many problems to consider, which
are defined below. Despite the very simple nature of the
problems, the computational complexity of the Reconfig-
uration and Relocation with these constraints have been
open for over a year. The following occupancy variants
have not yet been investigated and seem to be very ap-
proachable. Prove a complexity result for one or multi-
ple of these problems. They are all known to be in NP
(See Theorem 2). Can you reduce from a known NP-
Complete problem to prove NP-completeness? Or on the
other hand, can you show a polynomial time algorithm to

∗Department of Computer Science, University of Texas Rio
Grande Valley, isabel.sanchez02@utrgv.edu
†Department of Computer Science, University of Texas Rio

Grande Valley, francisco.gonzalez10@utrgv.edu

also show membership in P? Note that for each problem,
only one of these is possible unless P = N P

2 Problem Definitions

For the following problems, assume B is rectangular and
that the available directions are South and East.

Line Occupancy: Given a configuration C = (B,P)
where P consists of n single tiles, does there exist a step
sequence to turn C into a configuration C ′ in which the
tiles occupy all positions of a 1× n line. See Figure 1.

Figure 1: Example of Line Occupancy

Square Occupancy: Given a configuration C =
(B,P) where P consists of n2 single tiles, does there ex-
ist a step sequence to turn C into a configuration C ′ in
which the tiles occupy all positions of an n × n square.
See Figure 2.

Figure 2: Example of Square Occupancy

3 Line Occupancy Results

In this section, we detail our results on line occupancy.

Lemma 1 Given a configuration C, if ∃ a row with > 1
tiles, then C cannot be reconfigured into a configuration
C ′, where no rows with > 1 tiles exist.

Proof. Through a series of moves, assume that a config-
uration C, which contains a row with more than 1 tile,
can be transformed into configuration C ′, which does not
contain any rows with more than 1 tile. To turn C into
C ′, we would have to separate the 2 tiles that share the
same row. To do so, we could attempt a down movement;
however, since a down signal triggers all of our tiles to
move down once in unison, the tile we wish to separate is
now in another row with another tile, and so, there will

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

3

Hack Research 2019

always exist a row containing more than 1 tile. Since we
know that configuration C cannot be transformed into
configuration C ′ despite of the movements chosen, then
our assumption is proved wrong via contradiction. �

Theorem 2 Line Occupancy with 2 directions in a rect-
angular board is solvable in O(n) such that n is the num-
ber of tiles.

Proof. Given an input encoding for a configuration C,
map all of the tile’s x and y coordinates. From here, only
2 cases can occur. In case 1, ∃ a row or multiple rows
where there is > 1 tile. By following Lemma 1, if any
tiles share the y coordinate, then we know that there is
> 1 tile in that row, and we can return that the given
configuration cannot be reconfigured into C ′. In case 2,
@ a row where there is > 1 tile. If none of the tiles have
a shared y coordinate, then we can return that the given
configuration can be reconfigured into C’. �

4 Square Occupancy Results

In this section, we observe some things we found out
about square occupancy.

Lemma 3 Given a configuration C, if in any given row
or column ∃ more than n tiles, then C cannot be reconfig-
ured into a configuration C ′ where all of C ′ tiles occupy
an n× n square.

Proof. Direct from Lemma 1 �

Conjecture 1 In a given configuration C, if ∃ both a row
and a column that contain n tiles such that they do not
share a tile, then we can show that the given configuration
will never be solvable because eventually, we will make a
move resulting in a row or column containing more than
n tiles. An example of this can be seen in Figure 3.

Figure 3: An example of a configuration C that contains n
tiles on both a row and a column, but that do not share a
tile. Eventually, we will make a move that makes a row or a
column have more than n tiles

Observation 1 We observed some board configurations
in which we can easily verify that they can be reconfig-
ured into C ′. One case is when a configuration C has n
tiles on n lines only. An example of such configuration
can be seen in Figure 4.

Figure 4: An example of a configuration C with n tiles on n
rows that can be reconfigured to a configuration C′ with an
nxn square.

5 Conclusion

We have shown that Line Occupancy is solvable in poly-
nomial time. We have provided an algorithm that is able
to decide whether a given configuration C is able to be
reconfigured to C ′ in O(n), where n is the number of
tiles. We have also explored some findings dealing with
the Square Occupancy problem, though we were not able
to prove P membership.

6 Acknowledgements

The authors would like to thank Tim Wylie for organizing
HackR Research. They would also like to thank Robert
Schweller, Austin Luchsinger, and David Caballero for
guidance when tackling these problems.

References

[1] D. Caballero. Simple Variants of Robot Motion Planning
with Global Control

4

HαcκR 2019

Using Multiple Reinforcement Agents to Improve Retraining Time

Kevin Eastin ∗ Fernando Martinez †

Abstract

By dividing an agent into sub agents to handle more spe-
cific tasks, we manage to ’remember’ how to accomplish a
sub task rather than re-learning everything from scratch
in the event that a condition of the problem is changed.
Specifically we generalize the division of tasks to:
1) Setting a goal
2) Accomplishing that goal.
We argue that there are many problems that could ben-
efit from this particular division of labor.

1 Definitions

-The Goal Agent: A network that, given an instance of
a map, determines where the reward tile is located, and
passes that information to the Task Agent. -The Task
Agent: A separate network that, when given an instance
of a map, and the goal passed to it by the Goal Agent,
will learn to find the optimized path to get the character
to the reward tile.

2 Introduction

For our example,we are given an n by n grid, a character
that can move in that grid, and a desired ’reward’ tile.
The job of the neural network is to learn how to move
the character to the reward tile. Now imagine that the
reward tile is ’red’ when you first train it. If you then
change the tile to ’blue’, it would require relearning how
to move all together. We broke it up into two tasks to
avoid relearning. One neural network to handle how to
move to a specific tile, and one neural network to decide
what tile we should be moving to in the first place. To
do this we utilized openAI, an open source framework
for creating neural networks that utilizes PPO (Proximal
Policy Optimization) for it’s training.

3 Procedure

We began by recreating the environment (the game)
creating a single reinforcement agent to accomplish the
whole task. Then we had to figure out how to break this
one agent into 2 agents in a way that they reward/affect
each other meaningfully. The first agent, the ’Goal’
agent, given the initial grid configuration, has the job
of outputting what it believes to be the reward tile. It
passes this information, along with the initial grid config-
uration, to the second network, dubbed the ’Task’ agent.
It’s job is to output the sequence of movements it believes

∗Department of Computer Science, University of Texas Rio
Grande Valley
†Department of Computer Science, University of Texas Rio

Grande Valley

will reach the goal set forth by the Goal agent.
In terms of rewarding these agents, the ’Task’ agent is re-
warded based on how efficiently it reached it’s goal. For
example, given a 5x5 grid, completing the assignment
within 8 moves grants a perfect score, with a gradual
dropoff in reward for any number of moves greater than
8, finally rewarding a -1 if it takes at least 25 moves to
accomplish (punishing it for having to travel through ev-
ery tile). When the task reaches it’s goal, if that goal tile
was in fact a reward tile, then that reward is passed back
to the Goal agent. Meaning of course that if the goal
tile was not a reward tile, then the Goal agent receives
no reward. To properly gauge the effects of splitting the
tasks, we had to time how long it took for the single neu-
ral network to reach convergence, and then for it to reach
convergence again when the conditions change. Then to
compare those 2 values, with the training time involved
with the 2 neural network model.

4 Results

We were successful in creating the multi agent architec-
ture we set out to create.

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

5

Hack Research 2019

Training and retraining using the single Agent method.
These results above show that the single agent method
remembers nothing when retrained. It must relearn ev-
erything when conditions are changed (in this case, the
value of the reward tile)

Here we see the reward rate of just the ’Goal’ Agent.
Both learning and Re-learning. It is worth noting that
the Goal agent learns at a much faster rate than the sin-
gle network agent. So by not having to re-learn how to
move, our results show that splitting up the tasks of a
problem in a manner similar to what we did saves on re-
training time. Due to time constraints, we were not able
to generate all the desired result metrics we would have
wanted.

5 Conclusion

We set out to reduce the retraining time of a reinforce-
ment trained agent by splitting up it’s task into 2 sub
tasks to improve re-training time. Our results speak for
themselves. We are confident that this is an meaning-
ful way to tackle and reduce the difficulty of a certain
class of problems that can be divided into the ’Goal’ and
’Task’ agents, for instance location based problems. We
recommend further study/research with this technique.

6

HαcκR 2019

Dare you to push my buttons

Domingo Mart́ınez ∗ Lauryn Brough † Salvador Jimenez ‡ Aileen Perez §

Abstract

We are bettering the learning process while by throw-
ing random modifications to the neural networks, agents
environment, and adding a reward system.

1 Introduction

An unsolved problem of interest in machine learning is
determining how to transfer knowledge from a model to
a similar, larger model so learning time is reduced. Cur-
rently, when given a problem its solution must start train-
ing from scratch. However, this is not ideal for problems
were there might be a similar solution for something al-
ready solved. This type of problem could be gathering
from rocks and gathering from trees. Conceptually, once
you know one, it should be possible to do the other, how-
ever, this isn’t the case in machine learning; skills such
as walking up to the object then gathering would have to
be relearned for each new task.

Taking a game consisting of buttons, levers, and lights,
where depending on which light is on, you press the but-
tons in order from top to bottom directly below it and
pull the lever below those. The goal is to devise a method
to reapply so the light that is on doesn’t affect the net-
work and it is able to press the correct buttons without
additional training.

Our plan is to train a network on a sub-problem, such
as learning the order in which to press the buttons and
the lever, and then pass it to the next network which
determines the correct column of buttons we need to press
based on the light that the first network wouldn’t need
to worry about.

2 Layout

The game is structured in a way where the agent’s goal
is to light the correct bulb given a series of buttons and
levers in the minimal amount of actions. It receives a re-
ward of -1 for each action so it is encouraged to minimize
its actions. The environment is initialized to zeros and
each time a button is pressed in its correct sequence, its
value is changed to 1. The action is to visit a coordinate
in the environment and automatically change the value
to 1 if the previous buttons on the column were pressed.
If all buttons are pressed for a column with a light, then
it receives a reward of zero and terminates.

∗Department of Computer Science, University of Texas Rio
Grande Valley, domingo.martinez01@utrgv.edu
†Department of Computer Science, University of Texas Rio

Grande Valley, lauryn.brough01@utrgv.edu
‡Department of Computer Science, University of Texas Rio

Grande Valley, Salvador.jimenez01@utrgv.edu
§Department of Computer Science, University of Texas Rio

Grande Valley, aileen.perez01@utrgv.edu

Figure 1: Start Game

Figure 2: Finish Game

3 Thought Process

We tried many approaches to this problem but couldn’t
generalized them for any problem.

Theorem 1 We can better this model by changing the
environment to a smallest game without learning mis-
takes.

Proof. Not Proven: However, going in to method would
require that the game model is being given to the
agent. Breaking the environment into a single column
to four rows would not allow the generalization to other
games. �

Theorem 2 Create a DDQN agent to learn from an en-
vironment where the action space is (rows, columns) for
the original problem’s environment. The state space con-
sists of the models and (rows, columns) for the original
problem’s environment. The agent will attempt to learn
how to create a model when given (rows, columns), but
this task is not practical for problems where the model
takes too long to optimize. In our specified problem, this
should not be an issue.

Proof. Not Proven. �

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

7

Hack Research 2019

Figure 3: In this example, there are 3 rows of buttons and
20 columns of lights. The DDQN agent was trained on 1000
games, then trained on 1000 more games as displayed on in
the graph. The agent needs more exploration before its greedy
actions are better than random actions.

Figure 4: Instead of using 1 network, we split the problem for
2 networks: one to handle the rows and the other to handle
the columns. The column-learning agent quickly learned to
find the optimal solution for the column.

Due to time limits the last thought process is to attack
this problem with a Double Deep Q-learning while using
two dense hidden layers with 256 input shape each in the
neural network. This was the best method but time.

4 Our Results

Well this...

Figure 5: Here, the row-learning agent quickly learned to
find the optimal solution for the row.

5 Conclusion

After looking through our solution, we realized that this
idea had already been done through the development
of the options model, which involves pre-training sub-
tasks, which are later feed into a network currently being
trained as additional actions. The problem in this is that
it doesn’t solve the model-free aspect as human interven-
tion was required to identify said sub task.

Possible other solutions include development of a net-
work that involves transforming weights in a certain way
such that it learns the way it would need to essentially
copy the weights from one state to another. Another pos-
sible solution is designing a new initializer, that instead
of initializing the weights to some uniform standard, but
some ratio of the previous weights.

References

[1] https://github.com/aileenperez/Dare-you-to-push-my
buttons.git. Basic game/ml github repository.

[2] G. Konidaris and A. G. Barto. Building portable options:
Skill transfer in reinforcement learning.

[3] D. Precup, R. S. Sutton, and S. Singh. Theoretical results
on reinforcement learning with temporally abstract op-
tions. In European conference on machine learning, pages
382–393. Springer, 1998.

[4] P. Tabor. Deepq learning template, 2019.
https://github.com/philtabor/Youtube-Code-
Repository/.

8

HαcκR 2019

K-UAV

Alissa Flores ∗ Mauricio Flores † William Reckley ‡ Roberto Rivas §

Abstract

One of many important computational problems in self
assembly is the problem of deciding whether a given tile
system uniquely produces a given assembly. Adlemen
et. al. gave a polynomial solution for the UAV (Unique
Assembly Verification) problem that runs in O(|A|2 +
|T ||A|). A is the final assembly and T is a finite set of
tile-types [1]. Furthermore |A| is the number of tiles in
the assembly, and |T | is the number of tile-types in the
system. In this short paper we show how we can solve
K-UAV with only one conflicting point at any state of the
supertile.

1 Introduction

If we try to approach a uniqueness requirement to some
set of assemblies, is it possible to verify that only k as-
semblies are producible from the given tile system? If this
can be done it would allow system designers to make one
tile system for k amount of assemblies, instead of making
k tile systems for k assemblies demonstrating to be more
efficient.

2 Related Work

Maybe i’ll put something here

3 Definitions

In this section I am going to give informal definitions, for
more formal definitions look here (cite this)
Greedy-Growth: algorithm that grows the seed
Conflict point: a location in a supertile were more than
1 tile can be attached
limGrowth: algorithm that grows the seed but every tile
attached has to belong all assemblies in the given set.
supertile: Can also be known as sub assembly, a seed that
grew to some subset of an assembly.
Tile System: a tile system consists of a set of tiles,a seed,
glue strengths, temperature, and a final assembly

4 Our Results

We can demonstrate for a set of k assemblies with at
most one conflicting point at any state of the supertile
is unique and can be achieved in polynomial time with

∗Department of Computer Science, University of Texas Rio
Grande Valley, alissa.flores01@utrgv.edu
†Department of Computer Science, University of Texas Rio

Grande Valley, mauricio.flores01@utrgv.edu
‡Department of Computer Science, University of Texas Rio

Grande Valley, William.reckley01@utrgv.edu
§Department of Computer Science, University of Texas Rio

Grande Valley, Roberto.rivas01@utrgv.edu

worst case O(k|A||T |+ |A|2+ |T ||A|). We also show other
results.

Theorem 1 Given up to 3 assemblies there can only be
one conflict point with 2 or 3 possible tiles to be placed.

Proof. Its clear to see if we have two conflicting points
then there is 4 or more assemblies being produced.
Assume we have built the largest maximum subset of the
3 assemblies using limit growth and we reach a state were
there is 2 conflicting points a, b. This means that both a
and b have 2 different tiles that can be placed at their cor-
responding location. Furthermore conflicting point a will
branch to 2 different assemblies as well as b therefore with
2 conflicting points the amount of produced assemblies is
at least 4. �

Theorem 2 given k assemblies we can find out if given
tile system can uniquely assemble these assemblies in
O(k|A||T |+|A|2+|T ||A|) with at most 1 conflicting point.

Proof. Since we consider only one conflicting point at
every state of the supertile, then only 2 to k tiles can be
attached to it. Our algorithm will split the set k assem-
blies to the amount of available tiles you can place in this
conflicting point. You can recursively do this until each
set of assembly is size 1. Since our algorithm can grow a
supertile after the conflicting tile is placed and check if it
is unique considering the previous growth, we can show
that k assemblies are unique. �

4.1 algorithm

This algorithms takes a set of assemblies with a super-
tile. The idea is that can grow the max subset of the
set of assemblies until it reaches a point where there
is one conflicting point, the method we use to do this
is limGrow. Once we reach this point we make a new
set of assemblies that are part of the subset our cur-
rent grown supertile with a tile t, where t is one of
tiles that can be added to this conflicting point. In this
problem we will say that every tile has a boolean vari-
able and that all of them are set to false. We then
say that every tile that can be attached to a conflict-
ing point is set to true. This is going to help us test for
uniqueness once we grow it with the current supertile.

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

9

Hack Research 2019

Data: Given a set of assemblies and a seed or
supertile S the algorithm is as follows

¡KUAV¿A, S ¡ if |A| == 1 then
1. Let A′ = greedy-grow(A)
if A′ 6= A then A can not be produced
2. For all non empty sites (x, y), test whether
any tile t can be added at an adjacent side

if yes than the assembly is not terminal
3. For all non-empty sites (x, y), let A(x, y) be
the supertile A with the tile at (x, y) removed
and tile at (x, y) has to be false. Let
A′(x, y) = Greedy −Grow(A(x, y)). If a tile
t 6= A(x, y) can be added to A′(x, y) at (x, y),
then A is no uniquely produced.

If A does fail any of these tests, return false.
else

1. A′ = limGrow(A) (If there is a site open
with one tile available and belongs to all
assemblies place it). A′ stops growing when it
reaches a point where it has to decide
between placing 2 up to k different tiles.

2. Intermediate checks . UAV (A′) [1], (checks
if subassembly grown is unique)

If subassembly A′ is not unique fails return
false

If conflicting point has more than |A| tiles to
place return false

If there is more than one conflicting point
return false

3.forall ¡tiles that can be placed in conflicting
point¿ do
newA = A′ + t
where t is the current tile.
for i = 0, i < |A|, i+ + do

if newA is a subset of Ai then
add Ai to new set of assemblies B

end

end
kUAV(B, newA)
clear B

end

end
Return true¿

Algorithm 1: How to write algorithms

4.2 KUAV

Theorem 3 Given k amount of assemblies the most tiles
that can be placed at a conflicting point is k.

Proof. Assume we have built the largest maximum sub-
set of the k assemblies using limit growth and we reach
a state were there is only 1 conflicting point. From here
its clear to see that we can have up to k different tiles
that can be placed in this conflicting point were each one
grows to one of the k assemblies. �

Theorem 4 Given k amount of assemblies the amount
of conflicting points that can be on a current state is at
most blog kc points.

Proof. Assume we have built the largest maximum sub-
set of the k assemblies using limit growth and there is n
conflicting points where n ∈ W. Since a conflict point
has at least 2 tiles that can be placed in that spot than
there exist at least 2n different combinations of tiles be-
ing placed in these conflicting points were each one grows
to a different assembly. Therefore 2n has to be less than
k and n ≤ log k. Since n is a whole number we have to
get the floor of log k �

5 Conclusion

We can see that solving KUAV with a max of one con-
flicting point per growing state is possible, but when we
change this to more than 1 this becomes hard. conflicting
points can now have one tile instead of 2 or more and the
building order has a big impact on this. Something we
can consider is how can we do 4UAV with 2 conflicting
points. This would help us get closer to solving K-UAV.

References

[1] L. M. Adleman, Q. Cheng, A. Goel, M.-D. A. Huang,
D. Kempe, P. M. de Espanés, and P. W. K. Rothemund.
Combinatorial optimization problems in self-assembly. In
Proceedings of the 34th ACM Symposium on Theory of
Computing, pages 23–32, 2002.

10

HαcκR 2019

Global Control for Robots: Examples in NP-Reductions

Bryant Riley ∗ Jason Villarreal † Aaron Ortiz ‡ Brandon Anzaldua §

Abstract

Relocation and reconfiguration are natural problems that
occur in computational systems. In order to better un-
derstand relocation and reconfiguration; we investigated
a simple version of the tilt model. This simple version
involved constraining parameters of the problem input to
east and south with a square boundary.

1 Introduction

We discuss the algorithm we came up in Theorem 1 as to
how to make a row or column, depending on the board
state. Following that we have our lemma and proof to
support our claim such that it will prove to be true pro-
vided the given conditions are met. Theorem 3 briefly
touches up on attempting to derive an algorithm for mak-
ing a square for a given board state but we were unable
to properly come up with a full-proof formula.

2 Our Results

In the end, we were able to properly come up with an
algorithm for the simplest case example and made some
progress on what is assumed to be the next hardest one.
With the given constraints we were able to prove that at
least one case is P space.

Theorem 1 Let’s assume we have a grid B of size m x n
spaces. Depending on if we want to make a row/column,
we have to count the amount of tiles in each row/column.
If you want to make a vertical column in the grid, first
check to make sure there is at most one tile in each row.
If this is true, you can then move all the tiles to the right
and then once they’re all along the border you can move
them down. At this point you would have assembled a
vertical column. If you want to assemble a horizontal
row, first check to see if there is at most one tile in each
column. If true, move all the tiles down until they’ve
reached the bottom border then move them all to the
right. At this point you would have made a horizontal
row.

Lemma 2 If there exists more than 1 tile of any given
row in board B, a line (1 x n), where n is the total num-
ber of tiles it’s impossible to achieve using global motion
controls on the tiles with the given constraint directions

∗Department of Computer Science, University of Texas Rio
Grande Valley, bryant.riley01@utrgv.edu
†Department of Computer Science, University of Texas Rio

Grande Valley, jason.villarreal01@utrgv.edu
‡Department of Computer Science, University of Texas Rio

Grande Valley, aaron.m.ortiz01@utrgv.edu
§Department of Computer Science, University of Texas Rio

Grande Valley, brandon.anzaldua01@utrgv.edu

of east and south such that configuration B can equal to
the goal configuration B’ (that contains that pattern).

Proof. A line of 1 x n is said to only have 1 tile per row
in the board that this line occupies. If we have a row in
board B that contains more than 1 tile, moving east any
amount of times will never change the amount of tiles
in a row, so moving in this direction is ineffective at all
to achieving the mono-tile row configuration we desire.
Moving south will yield only 2 results both still leaving
us with a board that has a row with more than 1 tile. Let
a be the target tile we want to remove from tile b, the tile
we want on that row. Let c be the space underneath b.
First off, if the space under both a and b is either empty
or occupied, our situation doesn’t change; we still need a
to move from row b. If we have a space and only under
b, occupied by another tile, a will move from b’s row
but the problem will exist on another row. The repeated
process will eventually end with a row containing more
than 1 tile so moving south is useless too. Since moving
in either direction is useless then there doesn’t exist a set
of steps that would result in a line if 1 x n in configuration
B’ from B. �

Theorem 3 First we count the number of tiles in the
grid. If we take the square root of n and it’s a whole
number, then it’s possible a square can be assembled us-
ing these tiles but it’s not guaranteed. If not, it’s impos-
sible. Next we check to see if a row or column has at
most square root of n tiles in it. If there is more than
that, then it’s already impossible to make a square from
the given board layout.

3 Conclusion

Machines are able to solve NP cases of problems but to say
that machines can solve all NP problems efficiently, let alone
verify such problems, is so far still unknown. Throughout
these examples of Global Controlled robots being asked to
preform various of task of relocations and reconfiguration and
occupancy, we have found that tasks that come to a result
of near NP-Completeness or actual NP-Completeness fails
against ”creative solutions” a human uses to solve such prob-
lems presented. It is possible that computers can find an
answer to see if completion of the task is possible, but finding
a way to reach this conclusion isn’t always guaranteed with
NP problems. The search for NP-Complete = P continues.

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

11

HαcκR 2019

Towards Kinase-Substrate Interaction Prediction

Arnoldo Ramirez ∗ Austin Luchisnger †

Abstract

In this paper, we discuss the challenges associated with
making inferences from featureless data. We follow pre-
vious work and explore the hidden information contained
within purely topological data.

1 Introduction

One of the primary goals of bioinformatics is to under-
stand biological data. Often, this involves big data anal-
ysis and machine learning techniques, since the amount
of information can be tremendous. Since traditional ma-
chine learning techniques rely on relatively thorough fea-
ture sets, a significant problem arises when presented
with featureless relational data. In these cases, the ac-
curacy of these traditional machine learning techniques
reduces dramatically. However, there may still be hope
of extracting hidden information in such cases. Recent
work [1] has shown that topological data may contain the
hidden information. For this project, we’re trying to fig-
ure out how to identify meaningful relationships between
nodes via topological information, and then try to pre-
dict future expected relationships which aren’t currently
known.

We briefly discuss some related work in Section 2, and
then provide our data set and approach in Section 3 and
Section 4, respectively. Lastly, we conclude in Section 5
with the ultimate research goals for this work.

2 Related Work

With the initial objective of predicting links in a net-
work, we referred to [2] for a short survey of pairwise
similarity scoring algorithms. The authors also included
novel algorithms of their own, like resource allocation and
local path. While these algorithms gave us a good start-
ing point for this project, most were not applicable to our
data set. Many of the preexisting scoring algorithms were
intended for applications like social networks, in which
every node represents the same object. These approaches
break down when dealing with graphs that have some bi-
partite properties.

This challenge was explained in [1], where the authors
were dealing with completely bipartite data. Along with
describing these challenges, the authors also presented
their solutions for dealing with them. By modifying the
traditional similarity scoring algorithms to slightly ex-
tend the local neighborhood, the authors were able to

∗Department of Computer Science, University of Texas Rio
Grande Valley, arnoldo.ramirez01@utrgv.edu
†Department of Computer Science, University of Texas Rio

Grande Valley, austin.luchsinger01@utrgv.edu

consider more connections. Much of our approach was
inspired by this publication.

3 Data Set

For this project, we worked with a data set provided
by Dr. Ayati. It consists of three graphs, each in an
edge-list format.

Site Similarity. Each node in this graph represents a
phosphorylated site, and edges between the sites repre-
sent biological similarities between them.

Enzyme Similarity. Each node in this graph repre-
sents an enzyme, and edges between the enzymes repre-
sent similar functionality between them.

Enzyme / Site Relationships. This is a bipartite
graph containing two sets of nodes; those which repre-
sent phosphorylated sites, and those which represent en-
zymes. Edges between these nodes represent an enzyme’s
responsibility for phosphorylating that phosphate.

4 Our Approach

For this work, we used the networkx library
(https://networkx.github.io/documentation/stable/index.html).
As a first approach, we started by creating a graph Gx,
which was the union of of the given site and enzyme
graphs Gss, Gee, Ges. Our intent was to produce a graph
which contains all information about how phosphory-
lated sites and enzymes relate to themselves and each
other. We then ran the traditional scoring algorithms
(primarily the Jaccardian coefficient algorithm) on Gx to
produce pairwise similarity scores between any two nodes
in Gx. We were surprised to find that the vast majority
of these scores were 0. Baffled, we began investigating.
It wasn’t until discovering [1] that we were able to
better understand what was happening. Along with
discovering these nontraditional algorithms, we realized
we needed to restructure our graph to better analyze
the enzyme-phosphosite relationships. We discovered
several disjoint subgraphs within our graph that were
skewing the analysis toward unlikely relationships. To
fix this, we pruned Gx to produce a graph G′x which
was connected and condensed in order to better suit
these modified scoring algorithms. We primarily ran
Resource Allocation (RA) index, which indicates a flow
of resources or information between two nodes. The
higher the RA index, the higher the correlation between
the two nodes in terms of their shared interactions.
We noticed that in this new graph, connections were
stronger and more meaningful, with all of the pairwise
scores being greater than 0.

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

12

Hack Research 2019

5 Conclusion & Future Work

With this data processing and pruning, we believe that
a solid foundation for further analysis has been laid. A
natural next step would be to train a prediction model
based on the weights established by our approach. There
is also room to apply different scoring algorithms and
compare the resulting relationships.

References

[1] Y. Lu, Y. Guo, and A. Korhonen. Link prediction in drug-
target interactions network using similarity indices. BMC
Bioinformatics, 18, 2017.

[2] T. Zhou, L. Lu, and Y.-C. Zhang. Predicting missing links
via local information. The European Physical Journal B,
71, 2009.

13

HαcκR 2019

Comparator Circuit Complexity

David Caballero ∗ Tim Gomez †

Abstract

CC is the class of problems solvable by comparator cir-
cuits. These circuits seem to be weaker than traditional
circuits. We explore different variants of a comparator
circuit satisfiability problem. In some cases the prob-
lem is solvable in polynomial time, in others it is NP-
Complete. We present these problems as candidates for
complete problems for a non-deterministic comparator
circuit class.

1 Introduction

Comparator circuits are sorting networks in which the
wires carry Boolean values. A comparator circuit is pre-
sented as a set of m horizontal lines, which we call wires
[1]. The left of the wires is input a value determined
by a variable, its negation, or a constant 1 or 0. These
values flow to the right and are affected by comparator
gates, allowing values to be transferred across wires. In
one variation of the model a limited amount of fanout is
allowed in a way that allows the initial values of a vari-
able or its negation to be duplicated, but fan-out is not
allowed after the evaluation of a comparator gate. We
evaluate to complexity of the class CC-NP, defined by
the complete problem k-CC-SAT. k-CC-SAT = Given a
comparator circuit and an integer k, does there exist an
assignment of k 1’s such that the first bit of the circuit
evaluates to true. We show the complexity of the vari-
ants of these classes when limiting the complexity of the
respective comparator circuits.

2 Related Work

A very important P-Complete problem is the Circuit
Value Problem. In [2] Mayr and Subramanian explored
different limitations of this problem and their strengths.
The authors focused on the power of fanouts and the abil-
ity for other gates to simulate them. They found that in
most cases whether or not these gates could simulate a
COPY gate determined their complexity. For monotone
circuits if they could not simulate a COPY gate then the
problem was either in NC or CC-hard.

In [1] the authors expanded on the class CC and showed
several robust definitions and various complete problems.
They define Annotated Circuits where certain inputs rep-
resent different variables or their negation. They also
allow for negation gates in their circuit.

∗Department of Computer Science, University of Texas Rio
Grande Valley, name1@utrgv.edu
†Department of Computer Science, University of Texas Rio

Grande Valley, name2@utrgv.edu

3 Our Results

We explore several candidates for a complete problem for
a non-determinisic analogs for the class CC. We define
two problems:

CC-SAT Given a comparator circuit does there exists
an input that outputs a 1 on the first output wire? (We
also call this unbounded)

k-CC-SAT Given a comparator circuit and an interger
k, does there exists an input that outputs a 1 on the first
output wire using less than k 1s?

We explore these two problems in annotated circuits
and positively annotated circuits with negation gates.
We also allow the ability for limited fan-outs at the be-
ginning of the circuit by defining Multi-Use Annotated
Circuits and show when this is allowed the problems are
NP-Complete.

FO Param Monotone Negations

Single
Unb. P P
< k P P

Multi
Unb. NP-Complete NP-Complete
< k NP-Complete NP-Complete

4 Definitions

Annotated Comparator Circuits A Comparator
Circuit is annotated if each input is labeled with a vari-
able, it’s negation, or a constant (1 or 0) and one labeled
output wire.

5 k-CC-SAT

Here we present a polynomial time algorithm for the k-
CC-SAT problem.

Theorem 1 For annotated comparator circuits, k-CC-
SAT is in P .

Proof. We do this by labelling the output of each com-
parator gate with a weight. this weight represents the
number of 1’s needed for that output to be a 1. The
weight at any point on the wire is equal to the weight of
the wire at the last gate effecting that wire. Each wire
is initialized with a weight 1. For each comparator gate
going from wire m and n, the weight of m is now set to
m+ 1, while n is set to min (m,n). �

Theorem 2 For positively annotated comparator cir-
cuits, k-CC-SAT is in P .

Proof. In [1] they show that any positively annotated
comparator circuit with negation gates can be turned into

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

14

Hack Research 2019

an equivalent annotated comparator circuit. We can do
this is in polynomial time and the new circuit is satifiable
if and only if the original circuit is satifiable since they
are equivalent. �

6 Multi-Use Variables

Annotated CC-SAT with variables appearing multiple
times is NP-Complete.

Multi-Use Variables A Variable is Multi-Use if mul-
tiple wires are labeled with the variable or negation.

Multi-Use Annotated Circuits A Circuit is a Multi-
Use Annotated Circuits if it contains Multi-Use Vari-
ables.

Lemma 3 Any 3-CNF formula can be computed with a
polynomial sized annotated comparator circuit.

Proof. Each clause of a CNF formula can be computed
using compatator gates since they compute both ANDs
and ORs. No fan-outs are needed expect for the inputs
which can be accounted for with Multi-Use Variables. �

Theorem 4 CC-SAT with Multi-Use Annotated Cir-
cuits is NP-Complete.

Proof. We prove this by reducing from 3-SAT. From
Lemma 3 we know that for any instance of 3-SAT we
can create a polynomial sized annotated comparator cir-
cuit that has the same outputs. This circuit is satisfiable
if and only if there exists a satisfying assignment to the
3-CNF formula it is made from. �

Theorem 5 k-CC-SAT with annotated circuits is NP-
Complete.

Proof. To prove hardness of k-CC-SAT we can set k
to be the number of variables plus 1 so any satisfying
assignment will meet the requirement. �

Theorem 6 CC-SAT and k-CC-SAT with positively an-
notated circuits using negation gates is NP-Complete.

Proof. In [1] they prove that a positively annotated cir-
cuit with negation gates can be created from �

7 Conclusion

We presented multiple problems that could be naturally
complete for a non-deterministic comparator circuit class.
We conjecture there requires further investigation to bet-
ter pinpoint the best version of this problem. One area to
explore is the Turing Machines defined in [1] and adding
non-determinisim.

Acknowledgements

We would like to thank Erik Demaine, Oliver Korten and
others at MIT for bringing this problem to our attention
and providing initial problem definitions.

References

[1] S. A. Cook, Y. Filmus, and D. T. M. Le. The complexity
of the comparator circuit value problem, 2012.

[2] A. Subramanian. The Computational Complexity of the
Circuit Value and Network Stability Problems. PhD thesis,
Stanford, CA, USA, 1990. AAI9102356.

15

HαcκR 2019

Experimenting on Fractals with Negative Glues

Isaiah Saucedo ∗ Jamila Bunagan † Johnny Marroquin ‡

Abstract

There are many papers on creating fractals in self-
assembly. But for our paper, we tried to create the im-
possible fractals. These impossible fractals is where if we
can create some in the negative 2-HAM that are impos-
sible without negative glues, and can we create the ones
that are possibly more efficient?

1 Introduction

1.1 Understanding the 2-Hand Assembly Model

2-HAM also known as 2-handed Assembly Model, is a
well-known self-assembly model. In Figure 1, we are
showing examples of a 4-sided square tiles that has glue
assigned on each side. With the glue on each side, these
indicate the strength, given by the glue function, of how
each tile will stick together to create a shape. We are
to assume that there will be an infinite supply of each
tile type to create a combination of shapes to meet the
given temperature. The given temperature is the min-
imum threshold the tile’s strength. Anything less than
the given strength when combining the tiles will auto-
matically remove itself from the shape. Figure 2 is an
example with negative glues.

Figure 1: 2HAM Example

2 Constructing “Impossible” Fractals

The goal of this experiment is to design ”impossible” frac-
tals that are only possible through the construction of
negative glues. We approached this problem in several

∗Department of Computer Science, University of Texas Rio
Grande Valley
†Department of Computer Science, University of Texas Rio

Grande Valley
‡Department of Computer Science, University of Texas Rio

Grande Valley

Figure 2: -2HAM Example

different ways. Initially, the problem was tackled by cre-
ating negative 2-HAM fractals. We then moved on to
think about how configurations can grow towards infin-
ity. Lastly, we attempted to reduce this problem to a
smaller known problem.

• Negative 2-HAM: This approach was a hit or miss.
Some configurations ended up being too complex and
redesigning them to test if whether positive glues
can contradict a claim was a challenge. The rest of
the processes remained iterative and were built off
of past designs. One of these can be seen in Figures
3 and 4, which exhibits a ’P’ shaped-fractal using
negative 2-HAM.

• Infinity: We used the concept of infinity to ana-
lyze how the configuration grew with an increasingly
large input size. For each fractal analyzed, we were
unable to design ”impossible” fractals that met our
requirements. Furthermore, we were able to recreate
the negative 2-HAM fractal mentioned above uti-
lizing standard 2-HAM in an unlimited amount of
unique tiles.

• Reducing the problem: For this approach, we at-
tempted to reconstruct the problem that resides in
a predefined space or shape. This not only added a
constraint to input size but on the shape the tiles cre-
ated as well. Again, we were unsuccessful in discov-
ering an ”impossible” fractal using negative 2-HAM.

ACKNOWLEDGMENT

We would like to thank Dr. Wylie and Dr. Schweller
for making the Hackathon possible. Also, we give our
thanks to Dr. Tomai and Dr. Ayati for giving problems
in the list of problems to solve in the Hackathon, and for
helping any students who have had questions. We would
also like to thank the University of Texas Rio Grande

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

16

Hack Research 2019

Figure 3: A negative 2HAM fractal of an arbitrary shape
with a finite set of input tiles

Figure 4: An example of a 2HAM fractal of utilizing unlim-
ited unique tiles and weights

Valley’s Police Department for being cooperative with
everyone during the night hours in the Interdisciplinary
Engineering Academic Building.

References are important to the reader; therefore, each
citation must be complete and correct. If at all possible,
references should be commonly available publications.

References

[1] Cameron T. Chalk, Dominic A. Fernandez, Ale-
jandro Huerta, MarioA. Maldonado, Robert T.
Schweller, and Leslie Sweet. Strict self-assembly of
fractals using multiple hands. Algorithmica, pages
1–30, 2015

[2] Jacob Hendricks and Joseph Opseth. Self-assembly
of 4-sided fractals in the two-handed tile assembly
model. CoRR, abs/1703.04774, 2017.

[3] https://utrgv.hackresearch.com/site/

17

HαcκR 2019

Gobblet with Concrete is PSPACE-HARD

Jose Balanza-Martinez ∗

Abstract

We present a work in progress gadgets for a PSPACE-
hard reduction of a modified version of Gobblet by Blue
Orange. It brings us a step closer to proving that m,n, k
games are PSPACE-Complete for k ≥ 5.

1 Introduction

Gobblet is a game similar to Gomoku where players try
to connect 4 of their pieces or ”gobblets” in a row. In
contrast to Gomoku, gobblets have different sizes, and
once a gobblet has been placed on the board it can either
be placed over a smaller gobblet and ”gobble” it or moved
to an empty space. There is a specific order in which
gobblets can be placed. Each player starts with 3 stacks
of gobblets sorted by size. A player has to play the
gobblets in the order they appear, meaning that they
cannot play a gobblet from a stack, if there exists a larger
gobblet in that stack.

2 Preliminaries

We assume Player I moves the black gobblins. For this
reduction however, we consider an instance of the game
where all playable gobblets are already on the board,
and all gobblets are max size 2. One difference that this
reduction requires, is the use of immovable gobblets, that
serve as obstacles on the board. This modified version is
going to be called CONCRETEGOB . We also require
for the Players’ gobblet stack to be empty.

3 Our Results

3.1 Gadgets

This gadgets exploit a Gobblet rule that states that if
a player removes a goblet and uncovers a line of 4 that
would allow the opposing player to win, he or she has to
place it in another gobblet from the the same line of 4.
If a player cannot re-place the gobblet, he or she loses.
In this reduction all gobblets are placed in a way that if
Player I picks up one of their gobblets, they have to re-
place it in the same line. Gobblets are represented by the
dots and circles, dots represent the smaller size of gobblet
and circles represent a gobblet that can gobble up other
gobblets.

Wire For this gadget, the black gobblet starts in one
end and can only move if another black gobblet has been
placed adjacent to it.

∗Department of Computer Science, University of Texas Rio
Grande Valley, name1@utrgv.edu

Figure 1: Wire example

Variable For this gadget, the move order determines
who can set the variable’s value. If Player I goes first,
they can release the top gobblet in the gadget and
propagate the signal. If Player II goes first and blocks
the position in which Player I can move the gobblet, the
top gobblet cannot be released. If the player that goes
first does places the gobblet in any other position other
than that line, the opposite player wins.

Figure 2: Variable example

And For this gadget we need two imputs at the bottom
of the gadget to release the top gobblet.

Figure 3: And Gadget

Fanout This gadgets is the opposite of the And gadget.
As long as we have an input at the bottom of the gadgte,
we can propagate both signals.

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

18

Hack Research 2019

Figure 4: Fanout Gadget

Or For this gadget, as long as one signal comes in, you
can release the other two signals.

Figure 5: Or Gadget

Choice For this gadget, you can only release one of the
signals once an input is recieved.

Figure 6: Choice Gadget

4 Conclusion

These are the gadgets that we have come up with so
far. They prove PSPACE-completeness if we can create a
gadget that prevent signals to be propagated backwards,
overflowing the variable gadget. We need to work on how
to solve that.

19

HαcκR 2019

Machine learning Hack Research Problem Attempt

Kirk Miller ∗ Ken Evasco †

1 Introduction

Our problem was to improve the use of reinforcement
learning in the model of an agent trying to touch a red
square. Then improving it further so that its intelligence
becomes more generalized so that it could learn to move
not only on a red square but also to different colored
squares.

2 Related Work

For this document we employed the help of an arti-
cle called ”Reinforcement Learning Tutorial Part 1: Q-
Learning”. We used it as an introduction into the field of
machine learning. We also used tensor flow and looked
multiple documents about it. We also researched Tenser
flow, Gym and Keras.

3 Our Results

We started by learning about the Q learning algorithm
online. Eventually with the Q learning algorithm and a
Q table we made a visualizer to train an agent to go to
the start of the dungeon for +2 points or to the end of
the dungeon for +10 points. After playing around with
the different types of agents provided by an article to tra-
verse the example dungeon we started to make another
experiment to better understand the goal of training an
agent to touch a colored square in an n by n grid. For our
new experiment we made three board set ups, one where
the agent would only receive points if it touched the red
square, one where it would lose points equal to the de-
cay if it did not the red square and lastly one where it
would lose points depending on the L2 distance from the
red square. We had two agents cheater one and cheater
two. Both agents received the relative position of them
from the red square as a state input. The difference was
cheater two had an uncertainty value that was not present
in the first one, the uncertainty value that was calculated
by applying a soft-max function to all available moves
from the given space and then taking the highest value
and subtracting it from 1. After calculating the uncer-
tainty value from this, it represents a decimal percentage
of the AI making a random move. On average cheater two
preformed much better using its uncertainty mechanics.
It was able to identify and solve closed states very rapidly
and because of the Q-table it was able to propagate this
information to other states. After this experiment we
tried to delve into deep learning and deep-q learning. We
tried different libraries like Tenser flow, Keras, gym open

∗Department of Computer Science, University of Texas Rio
Grande Valley,
†Department of Computer Science, University of Texas Rio

Grande Valley,

Figure 1: Agent going to a blue square.

AI and many others but were unable to reach a conclusion
in time.

4 Conclusion

References

Reinforcement Learning Tutorial Part 1: Q-Learning by
Juha Kiili - https://towardsdatascience.com/reinforcement-
learning-tutorial-part-1-q-learning-cadb36998b28

Tensorflow - https://www.tensorflow.org/installdownload-a-
package

Gym - https://gym.openai.com/

Keras Tutorial: Deep Learning in Python by Karlijn Willems
- https://www.datacamp.com/community/tutorials/deep-
learning-python

Understand the Softmax Function in Minutes by Uniqtech
- https://medium.com/data-science-bootcamp/understand-
the-softmax-function-in-minutes-f3a59641e86d

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

20

HαcκR 2019

Deep Q Network To Learn Goal Oriented Tasks

Daniel Acevedo ∗ Kevin Teran †

Abstract

The goal of this research project was to train an agent to
reach or accomplish a particular goal. We created a Deep
Q Network to solve the problem. The Q network requires
convolutional layers so we created a game to save images
and use it as input data. The way the agent can learn is
through a reward based system consisting of states and
actions. Deep mind created a Deep Q Network architec-
ture including a replay memory to do advanced tasks we
simulated their network but without the replay memory
due to the goal being a very simple task.

1 Introduction

We created a Deep Q Network using three convolutional
layers, two dense layers, and one output layer. The train-
ing of the model consisted of a reduce mean loss function,
1000 training steps, and a standard gradient descent op-
timizer. The activation function for each layer was ReLu
and the activation for the output was a softmax classifier
to give us a certain probability for an action. The input
data consisted of gameplay images scaled down to 64x64
pixels with 3 color channels. Through every layer we max
pooled the data to reduce image quality. Our output was
a series of actions and input was a state. We put this
output through a Q learning algorithm to update value
of each state and action. With the loss value applied to
back propagation we expect the network to learn what
moves to make when it comes across a certain state.

2 Related Work

Deep mind as mentioned before created the same kind of
Deep Q Network but they used a memory replay tech-
nique. Reinforcement learning consists of reward and
policy gradients we used this principle to achieve a set
of optimal actions to accomplish a simple task. Q learn-
ing has been applied to simple tasks such as cartpole and
slot machines but with changing goals the gameplay be-
comes more difficult so thus the reason we introduced a
Deep Q Network to handle the dynamic nature of the
game.

3 Our Results

The results are pending due to not being able to train
the network yet.

https://github.com/daniel235/HackResearch2019

∗Department of Computer Science, University of Texas Rio
Grande Valley, Daniel.acevedo01@utrgv.edu
†Department of Computer Science, University of Texas Rio

Grande Valley, kevin.teran01@utrgv.edu

Figure 1: (

Starting state of game) fig: state 0)

4 Conclusion

In conclusion we created the network, the game, and the
gameplay. We still need to implement all of these things
together to work to train the network. Once we train
the network we can evaluate different goals and see if it
transfers over.

References

[1] S. Zychlinski Qrash Course: Reinforcement Learning 101
Deep Q Networks in 10 Minutes, 2019

This is an abstract of work done at HαcκR 2019. It should be considered a workshop preprint that could later be developed into a publication.

21

Author Index

Acevedo, Daniel, 21
Alaniz, Robert Michael, 1
Anzaldua, Brandon, 11

Balanza-Martinez, Jose, 18
Brough, Lauryn, 7
Bunagan, Jamila, 16

Caballero, David, 14
Canales, Eden, 1

Eastin, Kevin, 5
Evasco, Ken, 20

Flores, Alissa, 9
Flores, Mauricio, 9

Gomez, Tim, 14
Gonzalez, Francisco, 3

Jimenez, Salvador, 7

Luchisnger, Austin, 12

Marroquin, Johnny, 16
Martinez, Domingo, 7
Martinez, Fernando, 5
Marvin, Richard, 1
Miller, Kirk, 20

Ortiz, Aaron, 11

Perez, Aileen, 7

Ramirez, Arnoldo, 12
Reckley, William, 9
Riley, Bryant, 11
Rivas, Roberto, 9

Sanchez, Isabel, 3
Saucedo, Isaiah, 16

Teran, Kevin, 21

Villarreal, Jason, 11

22

