
Proceedings of the 3rd Hack Research Hackathon
University of Texas Rio Grande Valley

HαcκR 2022
Tim Wylie, Editor

Copyright © 2022 for the individual papers by the papers’ authors. Copying permit-
ted only for private and academic purposes. This volume is published and copyrighted
by its editors.

i

Preface

Hack Research took a two-year hiatus, as most things did, because of the pandemic.
This year required restarting some of the machinery that had made the first couple
successful. Even though there may be a record number of students, there are, overall,
fewer engaged in research due to less engagement between students and faculty during
the past two years.

With that in mind, Hack Research proved to be a good platform to begin some of
this engagement and to find problems that are accessible for new students in order to
bring them into different research areas. We had more faculty participation, and thus a
greater variety of problems, than we have had before.

The goal of Hack Research is to have a competition focused on algorithmic and the-
oretical skill development rather than software. This gives students who excel in these
areas an opportunity to apply that knowledge, and provides a meaningful way to connect
with faculty and their research. This focus, however, does not mean there is a lack of
software development; many of the problems were based in software with machine learn-
ing, data mining, and visualization applications. These problems target the development
of research skills rather than a single unsolved question.

The questions are posed by faculty and students in various research groups. Finding
and proposing problems requires a difficult balance between it being interesting and yet
approachable. Attempting to find such open problems is a struggle when the problems
should be nontrivial. This year, there was a greater variety of problems and all of them
were better scoped for the timeframe of the event. There was more focus on exploratory
skills such as data mining, but there were also many small approachable theoretical
problems.

As usual, we limited our advertisement of the event to upper level courses and word
of mouth. Thus, although the event was open to anyone, most of the students already
had relationships with the professors from courses. This is another tricky aspect of the
event. We do need to advertise more, but we also need to make sure students understand
the point of the event.

Many people contributed to the success of the event, and I have tried my best not to
miss anyone in the acknowledgements section. We were graced with several key sponsors
this year - GitHub, Major League Hacking, Overleaf, DHS, and UTRGV all contributed
in one way or another. I am indebted to the support of the CS department and its chair,
Dr. Emmett Tomai, and to the vast amount of organization help from the administrator
Ms. Lisa Moreno.

Overall, HαcκR had a successful return, and we learned a substantial amount in the
process. We are looking forward to next year.

December 3-4, 2022
Edinburg, TX, United States

Tim Wylie, Editor

ii

Acknowledgements

This event would not have been possible without the help of many people of whom we
are extremely grateful to know.Without a doubt, the event would not have been possible
without the understanding and support of the Computer Science department. They have
consistently supported and helped fund the event. Dr. Emmett Tomai, the department
chair, championed support and funding for the event while we were scrambling to make
it happen. His work and the department made the event possible.

The other person who was instrumental in forging the event into a reality was Lisa
Moreno, who is the Administrator of the Computer Science department. She took over
a huge portion of the administrative aspects this year and saved us hours and hours of
work. She arranged purchasing, food, reservations, delivery, and all accounting. Hack
Research has grown enough to be unruly when planned without help, and she made it
possible for us to focus on the bigger items.

There are several faculty who contributed their time and skills to making this event a
success. In no particular order, problems were contributed by Robert Schweller, Marzieh
Ayati, Qi Lu, Emmett Tomai, Bin Fu, Eric Martinez, and Tim Wylie. Many of the these
faculty, as well as Erik Enriquez, came to most of the event to help the students.

We would be remiss if we didn’t mention our families, who were supportive and sacri-
ficed a great deal for us to pursue these outreach activities, and we are thankful for them
and their patience. Our students in the ASARG group also volunteered a lot of time to
help organize and run the event. No one will forget the trips to get food in pouring rain.

Finally, we are grateful for the sponsors who gave us the support we needed to make
the event a reality. As mentioned, the Computer Science department at UTRGV backed
the effort both monetarily and with the support of faculty and staff. Overleaf graciously
sponsored us a second year with material and some money for prizes. GitHub sent
us classroom material for the teams. Major League Hacking sponsored the meals at
the event (as a Pizza Fund event) and also handled registration through their website.
The rest of the support came from the Department of Homeland Security, who are
encouraging outreach events through DHS grant number 21STSLA00009-01-00.

iii

Sponsors

https://www.utrgv.edu/csci https://www.mlh.io

https://www.overleaf.com https://www.dhs.gov

DHS grant number 21STSLA00009-01-00
https://www.github.com

iv

https://www.utrgv.edu/csci
https://www.mlh.io
https://www.overleaf.com
https://www.dhs.gov
https://www.github.com

Organization

HαcκR 2022 was organized by the Algorithmic Self-Assembly Research Group (ASARG)
with the help of the Department of Computer Science at the University of Texas Rio
Grande Valley. The event was graciously hosted by UTRGV in Edinburg, TX. Further,
the event was supported in part by Major League Hacking (MLH), Overleaf, GitHub,
and the Department of Homeland Security (grant number 21STSLA00009-01-00).

The Program Committee are the faculty that judged the submissions. Those faculty
also submitted problems along with the faculty listed in Volunteers. Please note that
the ASARG members are default volunteers.

Directors

Tim Wylie timothy.wylie@utrgv.edu University of Texas Rio Grande Valley
Lisa Moreno lisa.moreno@utrgv.edu University of Texas Rio Grande Valley

Program Committee

Marzieh Ayati marzieh.ayati@utrgv.edu University of Texas Rio Grande Valley
Robert Schweller robert.schweller@utrgv.edu University of Texas Rio Grande Valley
Emmett Tomai emmett.tomai@utrgv.edu University of Texas Rio Grande Valley
Qi Lu qi.lu@utrgv.edu University of Texas Rio Grande Valley

Volunteers

Catalina Cantu
Erik Enriquez
Bin Fu
Eric Martinez
Scarlett Quintana

ASARG Members

Robert Michael Alaniz
Ari Gutierrez
Elise Grizzell
Chris Hinkle
Andrew Rodriguez

v

Results

Hack Research is still experimental, and therefore registration was restricted to maintain
a small size. The event had around 70 students participate in the 24-hour event. Of
those students, 20 students submitted a paper to compete for the prizes. In total, there
were 9 submissions. Seven professors contributed problems, and the faculty attended
some portion with several staying the majority of the time in order to encourage and
assist students. Those faculty are listed in the program committee (who also judged the
submissions), and as volunteers.

Winners

There were many quality papers submitted. The judges narrowed it down to these papers
as the top submissions based on quality, effort, teamwork, and difficulty.

1. First Place

� Anime Recommendation
Kolade Alabi, Kofi Nketia

� The Cycle of Inequality Constraint Games∗

Andrew Rodriguez, Robert M. Alaniz

2. Second Place

� Anime Recommendation
Ryan Knobel, Luis Ruiz, Mike Panuelos, Juan Perez

� Student Data Visualizations∗

Elise Grizzell, Gaukhar Nurbek, Nicholas Houghton

3. Third Place

� Robot Teams and the Bug Traps
Angel Peredo, Konrad Phillips-Lenz

� An Initial Foray into Object Detection
Kyara Valdez

∗Graduate Team

vi

Table of Contents

Obtaining Useful Insights from Historical UTRGV Data 1
Miguel Ramirez, Hector Hinojosa .

The Cycle of Inequality Constraint Games 2
Andrew Rodriguez, Robert M. Alaniz .

A Beginner’s Guide to AI, By a Beginner 4
Simon Elizondo .

Anime Recommendation 6
Ryan Knobel, Luis Ruiz, Mike Panuelos, Juan Perez

An Initial Foray into Object Detection 8
Kyara Valdez .

Robot Teams and the Bug Traps 9
Angel Peredo, Konrad Phillips-Lenz .

Student Data Visualizations 11
Elise Grizzell, Gaukhar Nurbek, Nicholas Houghton

Anime Recommendation 13
Kolade Alabi, Kofi Nketia .

An AI for 5ive Straight 15
Jose Martinez, Brandon Tiu, Jose Amaro .

vii

HαcκR 2022, University of Texas Rio Grande Valley

Obtaining Useful Insights from Historical UTRGV Data

Miguel Ramirez ∗ Hector Hinojosa †

Abstract

We analyzed a dataset containing 7 years of UTRGV

anonymized enrollment data using the pandas Python

library. Through this process we have isolated a few

enrollment problems and curiosities that exist in the

data.

1 Introduction

We set up our Python environment using PyCharm and
installed the Pandas[1] library, which we used to select,
slice and modify the provided data.
For this project we analyzed two data sets:

• Degree completion data that included student ID,
major, degree of study and graduation date.

• Enrollment data containing semester, student ID,
major, subject, course, section and grade.

We utilized Data Science and Statistics principles in
order to establish relationships between the various fields
present in the data.

2 Related Work

Performing frequent analysis of a university’s enrollment
statistics is a key way that revenue is estimated correctly
and programs receive their proper funding.
By referencing prior data we can get an idea of what
future semesters could look like, and prepare accordingly.

3 Our Results

We calculated the pass rate of every Computer Science
course offered across the dataset and isolated the follow-
ing as having the lowest pass rates:

Course Pass Rate

3333 60.02%

2322 62.50%

3334 64.33%

2380 64.49%

1370 67.21%

1380 67.67%

1170 68.32%

∗Department of Computer Science, University of Texas Rio
Grande Valley, miguel.ramirez05@utrgv.edu@utrgv.edu

†Department of Computer Science, University of Texas Rio
Grande Valley, hector.i.hinojosa01@utrgv.edu@utrgv.edu

Figure 1: Fall Slump.

A prominent feature in the data that we have observed
is the ”Fall Slump”, whereby every Fall semester there is
a noticeable drop in the pass rate of students who take
CS courses.
This can be correlated with some of the low pass rate
courses as they tend to be courses taken by Freshmen
or students in a transitory academic period. A student
may believe they want to study Computer Science but
change their mind after a semester of CSCI 1101 or CSCI
1170/1370 and drop those courses, leading to lower over-
all pass rates.

4 Conclusion

Taking into account these factors a pattern emerges:
Many incoming Freshmen who start a course of study
in Computer Science might not consider the field a good
fit after experiencing the requirements in a real context.
This is useful in order to explain why Fall semesters show
less success in terms of academics.

References

[1] Pandas. https://pandas.pydata.org.

This is an abstract of work done at HαcκR 2022. It should be considered a workshop preprint.

1

HαcκR 2022, University of Texas Rio Grande Valley

The Cycle of Inequality Constraint Games

Andrew Rodriguez ∗ Robert M. Alaniz †

Abstract

The Inequality Constraint game is a game where users
place available numbers on a board populated with
inequalities. Here we investigate the problem of K-
placement: Given an ICG board and an integer K,
can you place K pieces on the board? We show that
this problem is in P by a polynomial-time algorithm.
Along the way we provide an algorithm to find cycles
in a given graph as a stepping stone to our final result
which outputs if placing K pieces is possible.

1 Introduction

Recent studies in combinatorial game theory have
brought attention to a type of game known as Inequality
Constraint games. These games were first introduced in
[2] with a basic 1 × n board. Current ICG works have
shifted focus to problems involving n × n boards. The
1-player n × n ICG was shown in [1] to be solvable in
P. In [3] it was shown that the Unique Fewest Moves In-
equality Constraint problem is NP-complete. We study a
similar problem, only instead of placing exactly K moves
such that there are no more available moves, we ask can
you place K moves on a given instance of the Inequality
Constraint game.

2 Definitions

(a) (b)

Figure 1: An example Inequality Constraint Game starting
board is shown in figure 1a. Its corresponding graph is shown
in 1b, note how a cycle appears in the upper-left graph.

Definition 1 Inequality Constraint Game.
The Inequality Constraint Game (ICG) is a game

where players try to fill an n × n checkered board with
integers. This board is pre-filled with inequalities on
“black” spaces, causing players to only be able to place

∗Department of Computer Science, University of Texas Rio
Grande Valley, andrew.rodriguez09@utrgv.edu

†Department of Computer Science, University of Texas Rio
Grande Valley, robert.alaniz01@utrgv.edu

numbers in “white” spaces where inequalities are satis-
fied. The total number of “pieces” players have to play

with are n2

2 pieces (1, 2, . . ., n2

2), this also being the
number of “white” spaces on the board.

Definition 2 k-Placement.
Given an instance of the Inequality Constraint Game

and a k ∈ N, can k numbers be placed on the ICG board?

Definition 3 A cycle is a valid sequence of vertices in
which the first and last vertices are identical. A cycle c
is unique if no other cycles are a cyclic permutation of c.

Definition 4 Directed Board Graph
Given an ICG board B, we can construct a directed

board graphG = (V,E) where each v ∈ V maps uniquely

to one white space, therefore: |V | = n2

2 . Following meth-
ods used in [1], we can build this graph in O(n2) time.
An example of what this graph would look like can be
seen in figure 1b, which was derived from figure 1a.

Definition 5 Most Common Node
The most common node nM in a set of unique cycles

C is the node that appears in the most cycles.

3 Our Results

The results in [1] show us how to find if a given puzzle has
a solution in O(n2) time. This is equivalent to us being

given a k equal to n2

2 . However, while these results would

hold for k ≤ n2

2 , they would not hold if our constructed
graph contains any cycles in it. This is important as
these instances of the game may still have a solution with

k numbers (iff k < n2

2). We noticed that given a graph

with cycles, you could put at most n2

2 −C numbers, where
C is the number of unique cycles in our graph.
Here we give our algorithm to find cycles in a directed

board graph in theorem 1, followed by theorem 2 which
returns how many numbers you can place on a board in
O(n6) time. We wrote a version of the algorithm from
theorem 1 which can be found in this GitHub repository.
Informally, we first turn the ICG board into a graph.

We then find all of the unique cycles in that graph. The
idea is to remove nodes from the graph to break all of the
cycles. However, choosing to remove a node that appears
the most in the cycles may break several cycles rather
than just one. We repeat this removal process until all
cycles have been broken. The remaining nodes in the
graph can then all be used to place a piece.

Theorem 1 Let G = (V,E) be a graph where every v ∈
V has a max degree of 4. There exists an algorithm that
finds all unique cycles in G in O(|V |2) time.

This is an abstract of work done at HαcκR 2022. It should be considered a workshop preprint.

2

Hack Research 2022

Proof. We prove existence by giving the algorithm.

With each node having a max degree of 4, we know that
a starting node has a maximum of 4 choices for paths,
and every reachable node has a maximum of 3 choices for
paths. Further, we know that a cycle will not repeat any
nodes.

A brute force algorithm will find all cycles in G with a
worst case runtime of |V | × (4 × 3(|V | − 1)). The cycles
can be refined into a set of unique cycles C with a worst
case runtime of |V |2. The final runtime is O(|V | × (4 ×
3(|V | − 1)) + |V |2) = O(|V |2). □

Theorem 2 Given an n × n ICG board B and some
integer k, there exists an O(n6) time algorithm that de-
termines if k pieces can be placed on B.

Proof. We prove existence by giving the algorithm.

Construct a graph GB = (V,E) from B in O(n2) time.
By Theorem 1, we can find the unique cycles of GB in
O(|V |2) time. Let C be the set of unique cycles computed
by the algorithm in Theorem 1. |C| will never exceed |V |.
The size of each cycle in C will never exceed |V |.

If |C| = 0, output “Yes” if k ≤ |V |, output “No” oth-
erwise. If |C| > 0, find the most common node in C.

Trivially, the most common node nM in C can be com-
puted in O(|V |2) time, arbitrarily breaking ties. Re-
move nM from V to create V ′. Remove every edge
e = (u, v) ∈ E where u = nM or v = nM to create
E′. Compute C ′ by running the algorithm to find unique
cycles on graph G′ = (V ′, E′).

If |C ′| = 0, output “Yes” if k ≤ |V ′|, output “No”
otherwise. If |C ′| > 0, repeat the process by finding the
most common node in C ′.

In the worst case, we repeat this process until we run
out of nodes, resulting in a runtime of O(|V | × |V |2) =
O(|V |3) = O(n6).

The remaining count of vertices is the max amount
of pieces that can be played on the given ICG board.
Therefore, for the current graph G = (V,E), if k ≤ |V |
we can output yes.1 □

4 Conclusion

We show that determining if a given n×n instance of ICG
can place k numbers is in P even if the directed board
graph has cycles. We provide a polynomial time algo-
rithm to find cycles specifically in directed board graphs.
We further provide the full algorithm of deciding if k
pieces can be placed.

1Should you want the algorithm to also output a winning strat-
egy, we can follow the final process in [1]. This does not affect our
runtime.

(a) (b)

Figure 2: Figure 2a highlights the cycles found in this given
directed board graph. After applying the algorithm described
in theorem 2, our resulting graph would look like figure 2b.
Counting the remaining vertices tells us if we can place K
pieces.

References

[1] C. Chalk and B. Wang. One-player constraint inequality
is easy. pages 7–8, 2018.

[2] A. Levitin. Algorithmic Puzzles. 2011.

[3] R. A. T. G. R. S. T. Wylie. Fewest moves inequality
constraint puzzles. 2021.

3

HαcκR 2022, University of Texas Rio Grande Valley

A Beginner’s Guide to AI, By a Beginner

Simon Elizondo ∗

Abstract

What was once thought to be a pipe dream in the

computer science world has now become a reality.

What used to take days and months to compile to

now mere minutes. A notable fact being that AI has

gone from a master level computer science subject to

now being used by intermediate level developers. The

many changes into how deep learning AI has changed

has become exponetially more efficient.

1 Introduction

Due to the recent advances in AI, it has become possible
for intermediate level developers to train and deploy deep
learning AI

At a high level we can view a normal computer program
as ”figure one”. The User inputs data, the program cal-
culates and manipulates the data then exports the data

Figure 1: A Normal Computer Program at a High Level[1]

An early interpretation can be seen in figure 2 where
we can see that there are many added components to the
model when compared to a normal computer program.

Figure 2: Early High Level Deep Learning Model[1]

But after years of iterations, a modern deep learning
module at a high level can be visualized as figure 3

Figure 3: Modern High Level Deep Learning Model[1]

∗Department of Computer Science, University of Texas Rio
Grande Valley, simon.elizondo01@utrgv.edu

2 Related Work

On a high level, Deep learning AI can be visualized as
”Figure 4” Where it can be repeated multiple times in
order to get as accurate of a AI as possible

Figure 4: High Level Deep Learning Process[1]

The concept itself is easy, Train the module, validate
the data, then test the results, and the more times the
model is tested and the larger the sample size, the more
accurate the module will be.

3 Related Work

During the hackathon i took the first two lessons of the
FastAI online course which has been taught by Jeremy
Howard. In these lessons I watched videos explaining the
concepts of deep learning AI and was given a hands on
experience with the interactive notebook version of the
FastAI text book. The Notebook allows for manipulation
of the code and can be used with services like Kaggle and
Google Colab to offer free ways to learn and test deep
learning modules for free if the user does not have a ded-
icated GPU.Withing these interactive lessons I was able
to manipulate the deep learning values from comparing
birds and tree, to comparing lifted Trucks to 1993 Ford
Mustang.

4 My Results

AI has come a long way since its first inception, and it is
constantly improving. we are currently at a point where
intermediate developers can get ahold of deep learning
module documentation and begin development on AI
projects and study the concepts.
There are some complications in the deployment of the

simple deep learning model. This is to be expected since
new versions of the FastAI and its related modules are
constantly being deployed and debugging had to be done
to achieve a successful deployment of the deep learning
model. It was an enjoyable learning experience. Since I
had no prior knowledge with working with AI it was a
bit challenging understanding and deploying a program
in such short time frame, but was an enjoyable learning
experience.

This is an abstract of work done at HαcκR 2022. It should be considered a workshop preprint.

4

Hack Research 2022

Figure 5: Changing Search values to lifted trucks and a 1993
Ford Mustang

Figure 6: Running the comparison

5 Conclusion

While there were issues in the deployment of the deep
learning Model was unsuccessful, there was success in my
future interest in working with other AI models and AI
related programming.

References

[1] H. Jeremy. Deep learning for coders with fastai and py-
torch: Ai applications without a phd, 2020.

5

HαcκR 2022, University of Texas Rio Grande Valley

Anime Recommendation

Ryan Knobel ∗ Luis Ruiz † Mike Panuelos ‡ Juan Perez §

Abstract

We were given two data sets containing information

pertaining to all anime and a user’s past watch his-

tory. Using this information we were tasked to design

a system that takes this data and provides recommen-

dations to users based on what they enjoy.

1 Introduction

Data mining has contributed to an abundance of valu-
able information by revealing patterns within large sets
of data through the process of finding anomalies, pat-
terns, and correlations, allowing the prediction of out-
comes. Many models have been created for streaming
services that recommend shows and movies based on a
user’s history to understand why they watched or didn’t
watch and enjoyed or didn’t enjoy what they viewed.
Similarly, if you were given a user’s data that shows what
anime they watched and how they rated it and also have
access to the anime’s data such as its overall average
rating by all the users that have watched it, the gen-
res it pertains to, its popularity, and etc. Our goal is to
develop a model that can determine whether a specific
anime is a good recommendation for a user and then use
this model to generate a recommendation for the user.

∗Department of Computer Science, University of Texas Rio
Grande Valley, ryan.knobel01@utrgv.edu

†Department of Computer Science, University of Texas Rio
Grande Valley, luis.ruiz02@utrgv.edu

‡Department of Computer Science, University of Texas Rio
Grande Valley, mike.panuelos01@utrgv.edu

§Department of Computer Science, University of Texas Rio
Grande Valley, juan.m.perez02@utrgv.edu

2 Model Construction

Our initial discussion sought to conclude what data from
an anime could best provide insight into the user’s ex-
perience and explain why the user chose to watch it for
the length that they did and rate it the score that they
gave. With many contenders such as the anime’s rank,
the number of episodes, the producer, and the time pe-
riod that it was aired, we concluded that our initial model
should be based on the anime’s genre and score (the av-
erage rating given by all users). Our model considers
two features. The first feature is composed of the user’s
top 25% favorite genres and the average rating of all the
anime that they watched. The second feature is com-
posed of an anime’s genres and its score.

3 Testing Procedure

To test the performance of our model, we first construct
a testing data set with the provided user history. Each
instance of the training data for the model intuitively can
be broken into two components: what the user enjoys on
average, and information about a specific anime.

3.1 Computing a User’s “Average Anime”

Given a user’s watch history, we consider every anime
that the user rated a 7 or better. From this set, count
the appearance of each genre, assigning a value of 1 for
the most common genres (top 25 percent) or 0 for all
other genres. Store these values in an array, where each
position in the array corresponds to a different genre. Ad-
ditionally, compute the average cumulative rating (across
all users) for each anime that the user rated highly and
store this value in the array.

UserID AnimeID Score WatchedEpisodes

0 20 8 150
0 38000 9 24
0 38777 10 3

3.2 Computing Specific Anime Information

For any instance of anime, store the genres as binary
values in an array, where each position in the array cor-
responds to different genre and the ordering matches the
array described in section 3.1. Similarly, store the cumu-
lative rating for the anime given by all users in this array
as well.

3.3 Training Data for the Model

Using the methods described in sections 3.1 and 3.2, it is
now possible to construct a feature array that our model
can use as input to output whether the anime would be a

This is an abstract of work done at HαcκR 2022. It should be considered a workshop preprint.

6

Hack Research 2022

good recommendation for the user. Since “good” recom-
mendations are subjective, we define the following proce-
dure to train the model:

• For each individual user:

1. Compute the user’s “Average Anime”

2. For any anime that the user has rated and
watched, compute the respective information

3. If the user rated the anime above a 7, consider
this a good recommendation (1). Otherwise,
consider this a bad recommendation (-1)

Given this procedure, we can then create 2 sets of data.
The first data set contains the information about the user
and each anime, and the second data set contains the
corresponding label for the recommendation. The model
then intuitively can make predictions for some instance
of anime conditionally on what the user enjoys in order
to make the best prediction possible.

4 Performance

To test the performance of our proposed model, we split
the data set into two different types of sets: a training set
(80 percent of the data) and validation set (20 percent of
the data). The training set is used to train the model,
which includes both the user/anime data and the recom-
mendation label. The validation set on the other hand is
used to measure the performance of the model. Here, we
provide the model solely with the user/anime data, make
predictions using the model, and compare the results to
whether the user enjoyed the anime. As a result, per-
formance is decided by the accuracy of the predictions
made by the model. Using 300,000 samples total, our
model was able to predict whether an anime was a good
recommendation for a user with 72 percent accuracy.

5 Conclusion

Our model considers 2 factors when determining whether
an anime is a good recommendation for a user. However,
there are many other factors that can lead to a user ei-
ther enjoying or not enjoying the anime. The process
of constructing the model revealed this notion, which we
leave for future work to potentially yield a higher pre-
diction accuracy. The foundation of the model was fur-
ther adapted to not only make a prediction for specific
anime instances but also provide an anime recommenda-
tion that our model determines to be good. As shown
in the image in the Introduction and the table in Sec-
tion 3.1, our model was able to recommend the anime,
”Hunter x Hunter” to a user who has watched ”Demon
Slayer” and scored it an 8, ”Naruto” and scored it a 9,
and ”Jujutsu-Kaisen” and scored it a 10.

References

[1] G. Akutami. Wiki Targeted (Entertainment).

[2] Shueisha. Hunter A Hunter (Volume).

[3] Viz. Naruto (Volume).

[]

7

HαcκR 2022, University of Texas Rio Grande Valley

An Initial Foray into Object Detection

Kyara Valdez ∗

Abstract

We attempted to incorporate object detection with

images shot by a Tello drone. We integrated the

YoloV5 framework for object detection with our given

footage. The obstacles we met were the limitations of

hardware and compatibility issues.

1 Introduction

Object detection is one of Computer vision’s techniques,
used for identifying, locating and classifying objects in
an image. For this research, we are integrating Yolov5,
one of the models inside the Yolo family, an architec-
ture primarily used for object detecting. We attempted
to use Yolov5 in Python’s IDE, PyCharm, but ran into
hardware issues. Our main objective was to improve the
performance of the previous system in the DHS research
project.

We used the images from a dataset provided for us and
train our Yolov5 model to give better accurate results.
Yolov5 is the default base model in the 5th version of the
Yolo family but since most of our dataset images were
large images, we needed to use the Yolov5s6 model. Our
decision was based on the pixel size of most of the im-
ages, the P6 output layer is better suited for large images
over 1280 pixels and there’s subcategories within the P6
output layer: nano, small, medium, large, extra-large.
Although the P6 model is meant for larger images we
needed the smallest subset of it, capable of giving good
output results while also maintaining decent speed and
precision.

2 Related Work

Using Python’s IDE, PyCharm, we cloned the GitHub
repository to the Yolov5 framework onto a new virtual
environment. We installed the proper packages using pip
and installed PyTorch to get the best production process
throughout development. At this stage during develop-
ment, we noticed many difficulties such as the CPU usage
instead of GPU usage.

In deep learning models, we’ve noted that the GPU
is essential for achieving efficient speeds. In specific,
NVIDIA GPU’s are the best in the field to train deep
learning models, due to the fact that the recent NVIDIA
cards from the RTX 2000 line of video cards and forward
have CUDA cores integrated internally. CUDA, other-
wise known as Compute Unified Device Architecture, is
admired for its ability to compute processes in parallel.

∗Department of Computer Science, University of Texas Rio
Grande Valley, kyara.valdez01@utrgv.edu

Our compatibility issues were the lack of updated re-
sources from CUDA Toolkit, torchvision and torch only
supports from CUDA version 11.7 and under. The avail-
able CUDA version on the Computer system used was
12.0 and downgrading wasn’t possible, other than the
fact that PyCharm isn’t the most optimal Python IDE
for CUDA.

3 Our Results

Figure 1: Example of validated images, this image help eval-
uate how effective the model is doing with the given footage

With this knowledge, we attempted to override device
settings within the Yolov5 code to use the system’s RTX
2060 with CUDA enabled however many errors came for-
ward. The only possible solution was using the CPU
instead of the GPU, even though CPU usage was too
hardware-intensive for the system to handle. Despite
these issues, some training was possible and some output
images were able to train but not with the best outcome.

4 Conclusion

With all the difficulties and obstacles, there’s a better un-
derstanding on how hardware affects deep learning mod-
els. The Yolov5 model, even though it wasn’t trained
enough to what was expected, it gave some accuracy lev-
els to the classifications specified in the VisDrone.yaml
file.[1]

References

[1] H.-K. Jung. Improved yolov5: Efficient object detection
using drone images under various conditions, 2022.

This is an abstract of work done at HαcκR 2022. It should be considered a workshop preprint.

8

HαcκR 2022, University of Texas Rio Grande Valley

Robot Teams and the Bug Traps

Angel Peredo Konrad Phillips-Lenz

Abstract

We proposed a deterministic algorithm to reach the

destination avoiding obstacles.

1 Introduction

Goal: We designed an algorithm to plan a path (e.g., Path
1 or Path 2) from a mine location to the base. The algo-
rithm is designed based on the capabilities of the robots.
It works for avoiding rectangular, triangular, and bug
trap shapes.

Figure 1: This is an example map, with a trap.

2 Set of rules

• State 1:

– if all cells are empty: move towards the goal.

– if normal wall equal to 3 sensors:
save position(x,y) of obstacle if closer to goal.
change to state 2

– if angled wall greater than 3 sensors:
save position(x,y) of obstacle if closer to goal.
change to state 3

• State 2:

– change direction to left
move one step

– check right

∗ if wall right: check forward

∗ if no wall forward: move forward
else change to state 1

– elif no wall right
change direction to right
move 1 step

• State: 3

– move perpendicular to the wall

– check perpendicular

– if !wall:

∗ check forward

∗ move forward

– else: change to state 1

Figure 2: These are rules to escape the trap.

3 Conclusion

The set of rules that we created are able to allow the robot
to reach its destination using a deterministic algorithm.

References

[ASV17] Alaa Eldin Abdelaal, Maram Sakr, and
Richard Vaughan. Lost highway: A multiple-
lane ant-trail algorithm to reduce congestion
in large-population multi-robot systems. In
2017 14th Conference on Computer and Robot
Vision (CRV), pages 161–167, 2017.

[Sto15] Karl Stolleis. The ant and the trap: Evolution
of ant-inspired obstacle avoidance in a multi-
agent robotic system. 2015.

This is an abstract of work done at HαcκR 2022. It should be considered a workshop preprint.

9

Hack Research 2022

Figure 3: These are rules to escape the trap.

[ZPR+13] Muhammad Zohaib, M Pasha, RA Riaz,
Nadeem Javaid, Manzoor Ilahi, and
RD Khan. Control strategies for mobile
robot with obstacle avoidance. arXiv preprint
arXiv:1306.1144, 2013.

10

HαcκR 2022, University of Texas Rio Grande Valley

Student Data Visualizations

Elise Grizzell ∗ Gaukhar Nurbek † Nicholas Houghton ‡

Abstract

Analyzing the UTRGV Computer Science Department’s anonymous student data is important to furthering
the efficiency and effectiveness of our department and its resources. We present several previously unseen results
in our work.

1 Introduction

A large portion of our non-plotted analysis is in the overlap between undergraduates who continued on to take
master’s courses in the department. With the soon coming Ph.D. program to the Department of Computer Science,
predicting whether a student will continue on is a worthwhile endeavor.
Our plotted data shows the grade and course flow data for students in the computer science department.

2 Methods

For this project multiple methods were used. First of all, we separated the data for CS students from the rest of the
students and extracted information on how many courses each student took for consecutive semesters per year from
2016-2022. This was done by using pandas library in Python and Excel sheets. After extracting and preprocessing
this information, we were able to visualize the flow of courses from Fall semesters to Spring semesters for each
year starting from 2016 to 2022, using sankey plot from R highchart library. After that, we used html,CSS, js and
bootstrap libraries to create summarized visualizations in a web page.

3 Our Results

In our data, we found several interesting correlations:
First, out of all the grad students in this department, only 83 had an in-scope major, and 45 took classes as under-
grads but did not have a major in the cs fields.
Electives: The most highly correlated undergrad elective taken in the junior or senior years with continuing on with
a master’s is internet programming.
Failing: Of the top 40 students by the number of classes failed, none graduated with fail counts above 10, and at 10,
4 graduated. The maximum number of classes failed by any one student is actually a tie between two students at 25
each.
Interestingly among undergrads who continued to grad school in the department, the most failed classes were systems
programming (9), internet programming (8), and automata (6).
Three type of plots were created such as grades distribution for each semester per each year from 2016-2022 such as
in Fig. 1. And the distribution of courses from Fall to Spring semester were shown for each year as in Fig. 2. All
these plots were summarized in web page such as in Fig. 3. for each year in separate dashboards.

4 Conclusion

Visualization of courses and grades distribution was completed for each year from 2016-2022. To conclude we learned
new tools of visualization such as Sankey diagram and were able to show distribution of students taking CS classes
between Fall and Spring semester. Further investigation into the course correlation with dropping from the major is
needed as well as potentially fine-grained professor-by-professor data. This is an interesting set of results.

∗Department of Computer Science, University of Texas Rio Grande Valley, Elise.Grizzell01@utrgv.edu
†Department of Computer Science, University of Texas Rio Grande Valley, gaukhar.nurbek01@utrgv.edu
‡Department of Computer Science, University of Texas Rio Grande Valley, nicholas.houghton01@utrgv.edu

This is an abstract of work done at HαcκR 2022. It should be considered a workshop preprint.

11

HαcκR2022

Figure 1: Spring and Fall 2016 grade statistics

Figure 2: Courses flow for 2016

Figure 3: Our webpage

12

HαcκR 2022, University of Texas Rio Grande Valley

Anime Recommendation

Kolade Alabi ∗ Kofi Nketia †

Abstract

Our objective for this project was to recommend a list

of anime titles given various inputs. We considered

two primary scenarios: one where user data is un-

available, and another in which it is. The recommen-

dations were made based on efficient similarity calcu-

lations. Given the name of an anime, the ”model”

locates that anime and returns the top 10 most simi-

lar anime. Given a user’s name, the model finds the

most similar user, determines the most liked anime

from both users, and then returns a list of anime ex-

clusive to the new user.

1 Acknowledgement

Many of the methods and functions applied in this project
were referenced from 4a previous project[1] from an Intro
to Data Science course in the Spring semester of 2022

2 Methodology

While the primary contribution of this project is the rec-
ommendation system, the steps that we took to replace
empty values in our dataset, transform categorical vari-
ables, and various other efforts to preprocess our data
were equally if not more important. This section de-
scribes these efforts in detail.

2.1 Preprocessing: Anime Dataset

The Anime dataset presented a couple of problems for
us. We first needed to deal with the empty values in
the dataset. These were represented as the string ”Un-
known”, and our first step was to replace these with
proper NaN values. With that done, we opted for a
simple forward-fill of values in the ”Scored”, ”Aired”,
and ”Duration” columns. Before filling the ”Aired” and
”Duration” columns, however, more select processing was
necessary.

The ”Aired” feature of anime titles represented the
time an anime first aired to the public. These times were
presented in multiple forms, such as ”12/1/2005” or ”De-
cember 1, 2005”. By looping through each value and se-
lecting only the last 4 characters (representing the year),
this column was transformed into an integer representing
how old a given anime is in years. For the ”Duration”
column was slightly more difficult to process, but we used
a similar approach to obtain the duration of each episode
in minutes.

∗Department of Computer Science, University of Texas Rio
Grande Valley, kolade.alabi01@utrgv.edu

†Department of Computer Science, University of Texas Rio
Grande Valley, kofinketia01@utrgv.edu

Our final preprocessing step was to transform each cat-
egorical variable into some numeric representation. By
way of encoding, we created new columns for the cat-
egorical variables of ”Genres”, ”Source”, ”Type”, and
”Rating”, placing a 0 or 1 for each row depending on
whether an anime contained that category.

2.2 Preprocessing: Users Dataset

We also made use of a dataset of more than 300,000 users
with their ratings of various anime. For the purposes of
demonstrating our model, we selected the first 1000 users,
considering only an anime and the user’s rating of that
anime. In the future, we hope to find ways to make use of
the other available feature as well as the full user dataset.

A new column was created for each anime a user rated,
and a value was placed for a user’s rating of that anime.
This was used to create an entirely numerical represen-
tation of our data that would be primed and ready for a
similarity calculation.

2.3 Similarity Calculation

The two methods of similarity calculation used were Co-
sine Similarity and Euclidean Distance. Both are accu-
rate and highly versatile measurements, but in practice,
they work differently. The Cosine Similarity calculation
would compare each anime to the others and give a score
regardless of the magnitude of various column values.
This could be useful if no normalization of data is de-
sired as extremely large outlier values should not sway
results too greatly. However, in cases where higher val-
ues should correlate more with others (like in the case
of users rating an anime very high versus very low), the
Euclidean Distance metric is preferred.

Using the scikit-learn library in Python, we applied
both these matrics to make 2 cosine similarity matrices
(one for anime and one for users) as well as 2 euclidean
distance matrices (for the same groups). These ma-
trices are created by comparing the vectors of each
anime/user’s measurements against all of the others. In
the cosine similarity matrix, high values represent small
angles between two vectors. In the euclidean distance
matrix, low values represent small distances between the
heads of two vectors.

This is an abstract of work done at HαcκR 2022. It should be considered a workshop preprint.

13

Hack Research 2022

3 Our Results

Given that both sections of our recommendation system
are intelligent calculations, rather than machine-learning
models, accuracy metrics are not easily obtainable. How-
ever, we could obtain a broad understanding of how
”well” our model performs based on previous experience
watching selections of anime and a basic judging of how
similar the recommendations are.

Given the name of an anime, our model finds the
index of the anime in each similarity matrix and sorts
the list of all other anime by their similarities. It then
returns a list of names of the top 10 most similar anime.

Given the name of a user, the model finds the most
similar user (using the matrix) and obtains a list of
their favorite anime. It compares this list to the original
user’s list of favorite anime and finds exclusive entries.
It returns this final list as recommendations.

4 Conclusion

Large machine-learning models are not always necessary
to draw insights and make predictions, as I hope you
gathered from this project.

References

[1] O. P. Xavier Rios, Kolade Alabi. Gamers, 2022.

14

HαcκR 2022, University of Texas Rio Grande Valley

An AI for 5ive Straight

Jose Martinez ∗ Brandon Tiu † Jose Amaro ‡

Abstract

When Straight 5 is generalized into a K-in-a-row-

game, where two players place p pieces on M ∗N board

alternatively. The first player to get his pieces K-

consecutive in a line horizontally, vertically, or diag-

onally wins. When both players get the lowest value

cards this game becomes Connect6 where there is no

winning strategy from a empty board. As well at fixed

constants of K, p such that K − p ≥ max{3, p} at any

given starting position it is PSPACE-complete when

trying to determine whether the first player has a win-

ning strategy. With this when both players both get

lowest value cards in their opening hand this implies

PSPACE-complete[1].

1 Introduction

Straight 5 is a game similar to that of connect 4. The
way this game is played is there is a 10 by 10 board
where players take turn alternating placing pieces on the
board. Another constraint is that there are cards labeled
from 0 to 99 and at the start of the game, 4 cards are
drawn and randomly given to each of the players. A
player during their turn can either draw a card or play a
card. However, a player cannot do both during the same
turn. When they play a card, they can place a pin on the
board where the number is either equal or greater than
the value on the card.

2 Our Results

We were able to create a game board as well as the num-
bers aligned with each of the index’s. We are able to
designate positions to the pins on the board so that we
place them in the pin holes. The game now as it stands
has a bug that does not allow the game to finish in the
regular condition when either a player is left with 4 dead
cards or one player has 5 pins either diagonally, horizon-
tally, or vertically.

3 Conclusion

Had we been able to successfully implement the board
game and then code the AI to play the game, the end
result would have been an AI that would a higher chance
of winning against a human opponent. With the AI, the
way we planned to train it was through reinforcement
learning. This would have included generating a starting

∗Department of Computer Science, University of Texas Rio
Grande Valley, jose.martinez56@utrgv.edu

†Department of Computer Science, University of Texas Rio
Grande Valley, brandon.tiu01@utrgv.edu

‡Department of Computer Science, University of Texas Rio
Grande Valley, jose.amaro01@utrgv.edu

population of 100,000 to 150,000 species, running it for
n generations, each generations would play against an-
other member of the species, all of the losers would be
killed off, the winners would then be cloned through the
use of asexual reproduction, and then we would mutate
the species with a mutation rate of about ten percent to
derive the AI. Once we run for a certain amount of N gen-
erations we run a tournament style once they have gained
a sense for their own style in winning and through this
bracket we can determine the single best winning strat-
egy or one of the best winning strategies the Ai within
those constraints could create.

References

[1] M. Y. Hsieh and S.-C. Tsai. On the fairness and complex-
ity of generalized k-in-a-row games. Theoretical Computer
Science, 385(1):88–100, 2007.

This is an abstract of work done at HαcκR 2022. It should be considered a workshop preprint.

15

Author Index

Alabi, Kolade, 13
Alaniz, Robert M., 2
Amaro, Jose, 15

Elizondo, Simon, 4

Grizzell, Elise, 11

Hinojosa, Hector, 1
Houghton, Nicholas, 11

Knobel, Ryan, 6

Martinez, Jose, 15

Nketia, Kofi, 13
Nurbek, Gaukhar, 11

Panuelos, Mike, 6
Peredo, Angel, 9
Perez, Juan, 6
Phillips-Lenz, Konrad, 9

Ramirez, Miguel, 1
Rodriguez, Andrew, 2
Ruiz, Luis, 6

Tiu, Brandon, 15

Valdez, Kyara, 8

16

